
ESGI 2016 – Cloud is Mine Report

Fatima Al Harbi, Zacharie Alès, Sabah Dimassi,

Guillerme Duvillié, Vincent Labatut, Céline Lacaux,

Elvys Linhares, Sang Thi Nguyen & Florentina Nicolau

July 18, 2016

1 Introduction
In this section, we introduce the company and the proposed problems. We then
describe the provided database and identify some of its limitations which, to
our opinion, prevent any effective resolution of the problem (Section 2). We
nevertheless propose a purely theoretical solution (Section 3), but do not put it
in practice because of the incomplete data. Finally, we explain how our method
could be extended and improved (Section 4).

1.1 Cloud is Mine & AppVizer
Cloud is Mine is a French consulting firm specialized in cloud computing. It fo-
cuses on Small office/home office as well as Small and medium-sized enterprises.

AppVizer is a service provided by Cloud is Mine. It allows comparing Soft-
ware as a service (SaaS) solutions, i.e. on-demand software, in order for the
client company to find the tools the most relevant to its needs. The client en-
ters a description of the targeted tool, using various optional fields: software
name, features, language, etc. The search engine returns a list of SaaS with
their description.

For now, the outputs of the search engine depends only on the user request.
Cloud is Mine wants to leverage its data base to enhance its AppVizer service,
by adding some data mining features allowing to implement various recommen-
dation features.

1.2 Problem statement
Cloud is Mine identified two problems related to these targeted recommendation
features.

Software recommendation. The first problem is the recommendation of
relevant SaaSs to a given user. This recommendation would take the form of a
list of SaaSs (possibly an ordered one). Basically, two situations can occur.

1

First, if the user is anonymous, only its request can be considered: the
recommendation should therefore be based on the SaaS selected by previous
users with similar requests. So, to solve this problem, it is necessary to be able
to compare users through their requests.

Second, if the user is identified, then we can have access to his profile, in-
cluding his request history. The system should take advantage of this additional
information to enhance user comparison, and therefore improve its recommen-
dations.

Feature recommendation. The second problem is the recommendation of
features to software companies. Indeed, the firms developing SaaSs want to
identify the features typically desired by certain types of users, in order to
include them in their products and thus increase the demand.

Again, the identification of types of users requires to be able to compare
users. They can then be grouped, for example through cluster analysis.

2 Data description
In this section, we described the database provided by Cloud is Mine. We
identify several important limitations, corresponding to missing information,
which prevent any reasonable resolution of the proposed problems.

2.1 Terminology
Here are the definitions of some concepts which appear in the database and are
important to the problem:

• Service: a software (SaaS).

• Edition: a version of some software (free, paid, recent/older version, ...).

2.2 Data
Figure 1 shows the structure of the provided database. The most relevant table
in this context is user_search_history which contains all the requests performed
on appvizer and for each of them, the software selected or compared by the user,
if any.

2.3 Limitations
User feedback. It is important to notice that both proposed problems re-
quire access to a feedback of some sort. For instance, a measure indicating how
satisfied the user is from the results returned for his request, or the SaaSs the
user selected among these results. However, there is no such feedback in the
current AppVizer database.

2

accreditation
id INT(11)

name VARCHAR(255)

Indexes

business_function
id INT(11)

name VARCHAR(45)

Indexes

edition
id INT(11)

creation_date DATETIME

name VARCHAR(255)

service_id INT(11)

Indexes

industry
id INT(11)

name VARCHAR(255)

Indexes

item
id INT(11)

format VARCHAR(255)

type VARCHAR(255)

item_group_id INT(11)

name VARCHAR(255)

Indexes

item_value
type VARCHAR(31)

edition_id INT(11)

item_id INT(11)

value_integer INT(11)

value_conditional INT(1)

Indexes

price
edition_id INT(11)

currency VARCHAR(3)

period VARCHAR(45)

nb_of_users INT(11)

price DECIMAL(11,4)

Indexes

search_history_result
search_history_id INT(11)

edition_id INT(11)

order_index INT(11)

Indexes

service
id INT(11)

name VARCHAR(255)

creation_date DATETIME

industry_id INT(11)

principal_service_category_id INT(11)

Indexes

service_accreditation
service_id INT(11)

accreditation_id INT(11)

Indexes

service_available_language
service_id INT(11)

language_code VARCHAR(2)

Indexes

service_category
id INT(11)

name VARCHAR(255)

business_function_id INT(11)

Indexes

service_data_location
service_id INT(11)

country_code VARCHAR(2)

Indexes

service_secondary_service_category
service_id INT(11)

service_category_id INT(11)

Indexes

user
id INT(11)

creation_date DATETIME

first_name VARCHAR(255)

last_name VARCHAR(255)

email VARCHAR(255)

company VARCHAR(255)

position VARCHAR(255)

department VARCHAR(255)

company_type VARCHAR(255)

industry_id INT(11)

number_of_employees INT(11)

address VARCHAR(255)

postal_code VARCHAR(255)

city VARCHAR(255)

country VARCHAR(255)

turnover VARCHAR(255)

Indexes

user_search_history
id INT(11)

date DATETIME

summary VARCHAR(255)

user_id INT(11)

Indexes

Figure 1: Relational diagram of the Cloud is Mine database.

To our opinion, this is the most important limitation. Since this prevent us
from effectively testing the methods we propose to solve the problem, we only
focus on its theoretical description in this report.

Session tracking. The other major limitation in the provided data is the
absence of any tracking of the Web sessions. Since most of the users are anony-
mous, this would allow to at least characterize a user using not only his latest
request, but also the ones he posted right before. Indeed, a user generally builds
his request incrementally: first with one or a few fields, then by adding other
fields depending on the returned results, in order to decrease the number of
SaaSs proposed by the search engine.

In the current database, there is no way to link these different increments:
each one is considered as a separate, anonymous request. Modifying the website
to perform such a tracking and store in the database seems very doable, many
Web frameworks implement these features (e.g. EJB). The cost is marginal,

3

and this would enhance significantly the relevance of the recommendations.

3 Problem resolution
Due to the previously mentioned limitations, we will only propose some theo-
retical methods to solve the problems at hand, but will not test them on the
provided data, since this is not possible due to their incompleteness. This section
describes the proposed methods.

In order to identify similar requests, we propose to represent each session by
an oriented graph and to define similarity measures between these graphs.

3.1 Definitions
Let G(V,A) be an oriented graph. The indegree of a node i 2 V (denoted by
deg+(i)) is the number of arcs which ends to vertex i. Similarly, the outdegree of
a node i 2 V (denoted by deg�(i)) is the number of arcs which starts from vertex
i. A node is said to be a source (resp. sink) if its indegree (resp. outdegree) is
equal to 0.

3.2 Session representation
A session can be represented by an oriented graph with a unique source node
which contains the user information (or no information in the case of an anony-
mous user). Each other node in the graph represents a request. Intuitively,
there is an arc from vertex u to vertex v if the request represented by v is a pre-
fix of the request represented by u. In this case node v contains the additional
information of this request as well as the information stocked in node u. Thus,
in this representation an arc represents a set of research criterion. Each node
also contains the softwares selected or compared by the user, if any. Figure 2
represents the graph associated to one hypothetical session.

3.3 Similarity measures
Based on similar requests, it seems possible to predict the softwares which are
likely to be interesting for the current user of the website. In order to identify
the sessions which are similar to the current one, similarity measures need to
be defined.

In this section, we first present a similarity measure based on the comparison
of the last created sink node of the graph associated to the current session and
a sink node from a previously stored session. Secondly, we briefly describe how
the whole structure of the two corresponding oriented graphs could be taking
into account to improve the quality of this similarity.

4

User data

Category = CRM

Category = CRM, Cost < 20 Category = CRM, Feature = Chat

Category = CRM, Feature = Chat, Cost < 30

Category

Cost Feature

Cost

Figure 2: Graph representation of an hypothetical session

3.3.1 Similarity between two sink nodes

Table 1 represents the potential information available at a given node. The field
are clustered in type according to their relevance for the similarity measure. For
example, the most important type is the first one which contains the software
category (i.e., the type of software sought by the user).

Let s1 and s2 be the two sink nodes that we want to compare. Let si be
the value of field i in a given node s. Let Ft (t 2 {1, 2, 3, 4}) be the set of fields
contained in type t. A coefficient ci is associated to each type and each field.

The similarity between s1 and s2 is given by:

sim(s1, s2) =
P

t2T ct
P

j2Ft
cf sim(s1f , s

2
f)

Add the similarity

For each field

For each type

To compute this similarity the value of all the coefficients as well as the
similarity sim must be defined. First, we know that the coefficients associated
to the types must satisfy: c1 > c2 > c3 > c4 (since the relevance of a type is
inversely proportional to its value).

Secondly, the frequency of appearance of each field in the requests can be
used to thinly define their coefficient. We can see in Figure 3 that the use of
each field is heterogeneous. We postulate that the less frequent fields are the

5

Type Field
1 Software category

2

Industry (company type)
Number of users
Features
Budget
User company

3

Certifications
Department
Position (of the user in the company)
Activity sector
Interoperability

4

Country
Mobility
Languages
Support and formation
Security
Data localisation

Table 1: Field used to compute the similarity between two requests regrouped
by type (from the most relevant type to the less relevant).

most relevant. Thus, the value of a coefficient could be indexed to the inverse of
the frequency of its field. The only exception to this rule is the field "Software
category" which is the most relevant but also the most frequent as it can not
be empty in a request.

Similarly, the similarity sim(s1i , s
2
i) of two values s1i and s2i of a given field i

can be defined according to the frequency of these two values in the database.
For example, Figure 4 represents the number of occurrences of each value of
the field "Size of the company". Moreover, the similarity is equal to 0 if no
value has been filled by the user for this field (i.e., sim(;, si2) = sim(si1, ;) =
sim(;, ;) = 0).

3.3.2 Similarity between two oriented graphs

The accuracy of the similarity between two sessions could be improved by not
only taking into account two of its sink nodes, but the two whole graphs.

One possible way of doing so could be to merge the sink nodes of each
oriented graph in one node and to use the similarity measure presented in sec-
tion 3.3.1. However, this approach would not take into account the structure of
the graphs. Further investigation are required in order to define such similarity
measure.

6

Required
Less discriminant

Discriminant

Figure 3: Number of occurrences of each field in the requests contained in the
database.

4 Conclusion and future work
The method we propose implies to track the session of the users and store
them. This change on the database can be easily implement and its cost seems
reasonable to us in comparison to the benefit it will provide. The similarity
measures we present will then allow to compare the sessions of users and address
the problems identified by Cloud is Mine. We believe, up to the choice of relevant
coefficients, it will lead to an efficient method to cluster the users and also to
enhance the accuracy of the software or feature recommendation. In our opinion,
it will also improve the rapidity of the recommendations given to an user.

The limitations of our work is of course the application of the proposed
methods to real data. If our suggestion on the database is followed by Cloud is
Mine, our first following task will then be to test our proposed method on the
new database. The study of this new database will improve the estimation of
the frequencies of the occurrences of each field in the request, and then help to
choose the coefficients in the similarity measure. As future work, we propose
to compare not only the similarity of two sink nodes but of the whole user
sessions. This improvement of the method is based on the notion of distance
between directed graphs.

7

O
cc

ur
re

nc
es

0

500

1000

1500

Size of the company
1 100 200

Figure 4: Number of occurrences of each value of the field "Size of the company"
in the requests contained in the database.

8

