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1 Introduction

In 2013, 9.4 million flights have transported 842 million passengers and 13.4
million tons of freight and mail in Europe only. Air tra�c has increased
considerably in the last years and it is expected that this trend will continue:
an annual increase of 2.5% in the number of flights is expected until 2021
and a total increase of 50% is estimated for 2035, bringing to a total of 14.4
million flights ([1, 2, 6]). It is therefore essential that airlines companies,
service companies (as Amadeus) and national and international regulatory
agencies acquire planning and control tools. Nevertheless, tra�c growth and
increased number of passenger induce problems of increasingly larger sizes
but also new problems.

In this paper, we propose to study one of these new issues consisting in
estimating the worldwide number of passengers by origin-destination pairs,
on a monthly basis. If the number of passengers per flight may be estimated
by statistical methods, they do not allow directly to deduce the number of
travellers by origin-destination since several itineraries are generally avail-
able for a given pair OD, with the consequence that on a given flight, the
passengers have di↵erent origins and destinations.
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Estimating the number of passengers for each O-D pairs will allow to:

• analyse, over the time, the evolution of the demand for each pair O-D:
an origin-destination route in growth may prompt an airline to open
flight to serve at least one section, and, conversely, to close flights on
routes significantly decreasing.

• estimate tourism flows entering or leaving a given city, constituting a
significant economic indicator (again, it is possible to know the number
of passengers arriving at a particular airport but not their origin, which
is economically important).

• anticipate the spread of infectious diseases such as Ebola or Zika. It
might be emphasized that the UNESCO is in relation with Amadeus
for this purpose.

Besides obtaining these socio-economic indicators, a rapid resolution of
the problem is a prerequisite for more advanced applications, including opti-
mization of network airlines. The network optimization consists in evaluating
the e↵ect of the addition or removal of one, or more, flights on the profitabil-
ity of di↵erent markets (a market being precisely defined by the amount of
passengers on a O-D route, while profitability is directly related to the air-
craft load factor).

2 Problem Definition and Model

Deducting an Origin-Destination matrix from partial data on segments doesn’t
constitute a new issue by itself. For example, one can cite the Bierlaire’s
works, which give a clear survey of the various existing approaches, [3, 4, 5].
It is however completely new in the field of aviation and there are two main
reasons for this.

The size of the problem in the airline industry is absolutely huge and
vastly superior to the inherent problems in other areas, making the reso-
lution by traditional methods unattractive. The second reason is related
to obtaining data on a global scale, covering all airlines and airports (whose
number exceeds three thousand, constituting more than ten million potential
O-D pairs), which are unavailable for most of the companies, except services
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providers who work with all the airlines companies, such as Amadeus.

Specifically, our problem can be stated as follows:
Knowing the flow of passengers leaving from each airport, the flow of pas-

sengers arriving at the airports, an estimated number of passengers on each
flight, lower bounds (limit below which the flight is cancelled) and upper
(capacity the plane) on the number of passengers that can be transported on
the flight, the possible itineraries for each O-D pairs and the probability of
using them (again estimated by statistical methods), find the number pas-
senger for each O-D pairs.

Note that in this paper, we will use indi↵erently the word ”flight” and
the word ”leg” to designate a trip between a take o↵ and a landing. Let now:

• ai be the total number of passengers arriving at airport i,

• si be the total number of passengers leaving airport i,

• ↵l
od be the proportion of passengers using leg l for going from o to d,

• P̂l be an estimation of the number of passengers on leg l,

• Pl and Pl be the lower and upper bounds on the number of passengers
on leg l,

• A be the total number of airports,

• L be the total number of legs.

Let us define two sets of decision variables (although the second set of
variables could be removed):

• Xod: flow of passengers from o to d.

• Pl: number of passengers on leg l.

The problem can then be modelled as follows:
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min
LX

l=1

�l(Pl � P̂l)
2

s.t.
AX

d=1

Xod = so 8o 2 {1, ..., A} (1)

AX

o=1

Xod = ad 8d 2 {1, ..., A} (2)

Pl =
X

(o,d)2{1,...,A}2
↵l
odXod 8l 2 {1, ..., L} (3)

Pl  Pl  Pl 8l 2 {1, ..., L} (4)
Xod � 0 8(o, d) 2 {1, ..., A}2

Constraints (1) and (2) ensure that the number of passengers arriving to
and leaving the airports are equal to the corresponding data. Constraints
(3) compute the number of passengers per leg as a function of the flows of
passengers, while constraints (4) and (5) indicate the domains of the decision
variables. The objective function minimizes a weighted quadratic error with
respect to the expected number of passengers per flight.

As a consequence, the whole problem consists in minimizing a convex
quadratic (and separable) objective function subject to linear constraints.
Such a problem does not present any particular theoretical di�culties. Nev-
ertheless, worldwide instances include more than 3300 airports, leading to
more than ten millions of O-D pairs ! The challenge in solving this non-
linear problem is thus to deal with its huge size.

3 Analysis

In a first attempt, we proposed a Linear Programming based approach for
solving the problem. The basic idea is to substitute the quadratic error by
absolute values:
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min
LX

l=1

�l|Pl � P̂l|

s.t.
AX

d=1

Xod = so 8o 2 {1, ..., A} (1)

AX

o=1

Xod = ad 8d 2 {1, ..., A} (2)

Pl =
X

(o,d)2{1,...,A}2
↵l
odXod 8l 2 {1, ..., L} (3)

Pl  Pl  Pl 8l 2 {1, ..., L} (4)
Xod � 0 8(o, d) 2 {1, ..., A}2

Then, by introducing new variables tl and two constraints (per leg), we
got:

min
LX

l=1

�ltl

s.t. tl � Pl � P̂l 8l 2 {1, ..., L}
tl � �Pl + P̂l 8l 2 {1, ..., L}
AX

d=1

Xod = so 8o 2 {1, ..., A} (1)

AX

o=1

Xod = ad 8d 2 {1, ..., A} (2)

Pl =
X

(o,d)2{1,...,A}2
↵l
odXod 8l 2 {1, ..., L} (3)

Pl  Pl  Pl 8l 2 {1, ..., L} (4)
Xod � 0 8(o, d) 2 {1, ..., A}2
tl � 0 8l 2 {1, ..., L}

Unfortunately, preliminary numerical results, obtained by solving the
quadratic and linear models with a commercial solver on small instances,
showed that, first, the linear model provides a solution whose quality is worse
than the solutions furnished by the quadratic model and, second, the linear
model is surprisingly slow in comparison with the quadratic one. It was
therefore decided to not go further in this direction. We rather propose a
Lagrangean Relaxation approach.
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4 A Lagrangean Approach

A closer look to the problem shows that constraint (3) actually links the Xod

and the Pl variables. Associating a dual variable �l to each of these linking
constraints and sending then in the objective function leads to the definition
of the Lagrangean function L(�):

L(�) = min
LX

l=1

�l(Pl � P̂l)
2 � �l(Pl �

X

(o,d)2{1,...,A}2
↵l
odXod)

s.t.
AX

d=1

Xod = so 8o 2 {1, ..., A} (1)

AX

o=1

Xod = ad 8d 2 {1, ..., A} (2)

Pl  Pl  Pl 8l 2 {1, ..., L} (4)
Xod � 0 8(o, d) 2 {1, ..., A}2

which, in turn, gives:

L(�) =
LX

l=1

min �l(Pl � P̂l)
2 � �lPl +min

LX

l=1

X

(o,d)2{1,...,A}2
�l↵

l
odXod

s.t. Pl  Pl  Pl s.t.
AX

d=1

Xod = so 8o 2 {1, ..., A}

AX

o=1

Xod = ad 8d 2 {1, ..., A}

Xod � 0 8(o, d) 2 {1, ..., A}2

since there is no more link between Xod and Pl variables, nor between two
di↵erent Pl.

Hence, the Lagrangean Relaxation decomposes the initial problem into a
huge number of one variable problems and a problem with a large number
of variables . The last problem is the standard transportation problem for
which very e�cient algorithms have been developed for solving it.

6



It is well known that L is a concave but non-di↵erentiable function and
that 8� 2 RL,L(�)  V (P ) where V (P ) is the optimal value of the initial
problem. In other word, whatever the multiplier is, L(�) is a lower bound
on the optimal value of the problem. Since, we are interested in finding the
best lower bound, we need to solve the Dual problem:

max{L(�)/� 2 RL}

Thanks to the convexity of the initial problem, it is also known that the
optimal value is actually equal to the optimal value of the original problem.

5 Conclusion

The ESGI week has been dedicated to the understanding of the problem and
the available data, to design an instance generator (for preliminary testing)
and we proposed a Lagrangean Relaxation approach well suited for paral-
lelization.
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