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Abstract

Empirical models are developed to predict the mechanical properties of four
groups of cold-rolled annealed steels, based on upstream processing variables in the
hot-rolling process, annealing conditions, the chemical composition of the steel and
product details. Various linear models are considered but the simplest approach of
using a multiple linear regression model is considered the most satisfactory. This
analytical tool will allow better understanding of the steel making process and the
ability to vary input parameters to improve the product. In particular the number
of coils which fail mechanical testing may be able to be reduced, with a subsequent
fall in production costs.

1. Introduction

Cold-rolled steel is manufactured from hot-rolled coil that has been
chemically cleaned on the pickling line before being rolled. Cold rolling
reduces the thickness of the steel and at the same time changes its me-
chanical properties. Specifically, the resulting steel is harder, but less
malleable. Some steel is sold as a full hardness product, but other rolls
are heated in a controlled atmosphere, that is they are annealed, to
increase the formability of the steel. The annealed product is known
as cold-rolled annealed steel. In some cases the annealed steel is rolled
again after annealing, this process being termed rerolling.

Figure 1 below shows the hot-rolling process. This is followed by cold
rolling, possible annealing, and possible rerolling. A schematic diagram
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of the possible processing pathways for cold-rolled steel is shown in Fig-
ure 2.

For this project New Zealand Steel Ltd provided a large amount of
historical data concerning the mechanical properties of steel produced
in their mill. Data was also provided on predictor variables which might
affect the mechanical properties of the steel produced. Briefly, the pre-
dictor variables comprised three groups: processing variables such as
rolling and coiling temperatures; product details and annealing condi-
tions; and the chemical composition of the steel. A schematic outline
of the data format in Excel is given in Figure 3. The data provided is
discussed in more detail in Section 3. Figures 1, 2 and 3 come from
the PowerPoint presentation given to MISG2006 by NZ Steel. Diagrams
showing NZ Steel processes are also available from the NZ Steel website
at http://www.nzsteel.co.nz/nz/go/about-new-zealand-steel/operations.

Crucial to the economic performance of the mill is the ability to con-
trol process variables so that the steel produced possesses mechanical
properties which conform to a number of international standard spec-
ifications. The actual specifications vary according to the particular
product. Steel which does not conform to the intended specification
must be reprocessed or sold for a lower price, with obvious economic
costs to NZ Steel.

NZ Steel set the Study Group the task of developing a mathematical
model that would allow them to predict mechanical properties from the
predictor variables such as chemistry and process characteristics. Such a
model would allow the company to predict properties of products when
changes are made to the chemistry or process parameters and hence
provide a useful tool to improve the mechanical properties of existing
products, to reduce product testing failure rates and for the develop-
ment of new products. This description is very similar to that of the
project presented by NZ Steel to MISG 2005, see [7]. However the cur-
rent project concerns a different part of NZ Steel’s processing, and has an
added complication, in that annealing of coils is carried out in batches
of nine coils so that the observations provided concerning mechanical
properties of steel from different coils cannot be assumed to all be inde-
pendent. In addition, the Study Group sought to build on the experience
gained the previous year and explore the possibility of modelling the re-
sponse variables as a vector response, rather than individually. That
this is desirable can be seen from the relationships between the mechan-
ical variables shown by a pairs plot as in Figure 4. Note that three of
the response variables Yield, UTS, and HRB are measures of strength
and hardness, while ElongJIS5 is a measure of formability. An inverse
relationship between strength or hardness and formability is to be ex-
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pected. Typically a steel standard imposes simultaneous restrictions on
the strength or hardness and the formability, so it is useful to be able to
predict them simultaneously.

2. The cold-rolling process

The input material for the cold-rolling process comes from the hot-
rolling of the steel which takes it from steel slabs to coils of rolled steel.
This is shown in Figure 1 and further described in the 2005 report [7].
The cold-rolling process is shown in Figure 2. There are different path-
ways to the finished product which depend on the type of steel to be
produced. Cold-rolled full hard steel is reduced in gauge in the 4-hi
reversing combination mill, and not annealed. Similarly steel for the
metal coating line is cold-rolled (in the 6-hi reversing cold mill) and not
annealed prior to further processing. This project is not concerned with
these steels. Cold-rolled annealed and cold-rolled annealed and rerolled
steels are cold-rolled in the 4-hi reversing combination mill, then an-
nealed in the batch annealing furnace. The rerolled steels are then rolled
in the 4-hi combination reversing mill. An important point to note for
the analysis is that the annealing furnaces hold 9 coils at a time and nec-
essarily the coils which are in the same batch experience similar furnace
conditions. In addition, there are three different furnaces which may
have different characteristics with consequent effects on the mechanical
properties of the steel annealed in them.

3. Historical data

3.1. Mechanical properties

Four response variables have been recorded. These are obtained by
carrying out tests which determine various mechanical properties of the
individual coils of steel. The four variables are yield strength, coded
as Yield, ultimate tensile strength (UTS), elongation (ElongJIS5), and
Rockwell hardness (HRB). The first three of these are described in the
report on the earlier project from NZ Steel, [7]. Yield and ultimate ten-
sile strength measure in different ways the strength of the steel in terms
of its resistance to tensile forces. Elongation measures the ductility of
the steel as the proportion of its length by which it can be stretched be-
fore breaking. Rockwell hardness is a method of determining hardness
of materials such as metals and plastics. A description of hardness mea-
sures is available on the website of the UK National Physical Laboratory
[11]:
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Hardness is an unusual physical property in that it is the result of a
defined measurement procedure and not an intrinsic materials property
susceptible to precise definitions in terms of fundamental units of mass,
length, and time. In practice, hardness is measured in terms of the size
of an impression made on a specimen by an indenter of a specified shape
when a specified force is applied for a specified time, the indent being
measured after the force has been removed. There are three principal
standard methods for expressing the relationship between hardness and
the size of the impression, these being Brinell, Rockwell, and Vickers.
For practical and calibration reasons, each of these methods is divided
into a range of scales, defined by a combination of applied load and
indenter morphology, to cover the range of hardness. Recently, with
the introduction of instrumented indentation hardness, it has become
possible to measure the indent under the applied force.

Rockwell hardness is further explained thus:

In the Rockwell hardness test either a 120◦ diamond cone with a 0.2
mm radius spherical tip or a ball indenter of a specified diameter is
pressed into the surface of the test piece using a two step application—
preliminary test force F0 followed by an additional test force F1. The
preliminary test force is applied and maintained for a duration that does
not exceed 3s and an indenter depth reading is recorded. The increase
in force to the total test force F then occurs in between 1s and 8s. This
force is maintained for a duration of 4s± 2s, and the additional force is
then removed. While the preliminary test force is still applied, a second
indenter depth reading is made after a short stabilization time. The
Rockwell hardness value is calculated as:

Rockwell hardness = N − h/S

where h = the permanent increase in penetration depth at the prelimi-
nary test force, in mm; and N and S are constants specific to the scale.

The hardness scale used in the project data set is Rockwell B and mea-
sures the penetration depth when a ball indenter is used.

3.2. Predictors

The predictors consist of processing variables and product variables.
The product variables form two groups: chemistry factors, and product
details and annealing conditions. An outline of these groupings may be
seen in Figure 3.

Processing variables refer to processing in the hot-rolling mill. The
hot-rolling mill process was the subject of the NZ Steel project presented
to MISG 2005, and processing variables were described in the report [7].
Some of the variables have been given slightly different names, and fewer
processing variables were including in the data set provided by NZ Steel
for this project, so a description of the processing variables follows. All
temperatures are in degrees Celsius.
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Characteristics of Data for Analysis

Sample of data format in Excel spreadsheets:
MatItem Split? ProdDate Std Grd q_hProd_Gauge Width Weight ChemGrd

HH72684000 N 03-Jun-03 AS1594 HA250 10 1229 14.71 320

HH72688600 N 03-Jun-03 AS1594 HA250 7.95 1222 14.76 220

HH72688700 N 03-Jun-03 AS1594 HA250 7.95 1222 15.06 220

HH72688900 N 03-Jun-03 AS1594 HA250 11.94 1217 14.77 320

HH72689000 N 03-Jun-03 AS1594 HA250 10 1214 12.55 320

C Si Mn P S Ni Cr Mo Cu Sn V Al N Ti Nb

0.189 0.022 0.629 0.011 0.017 0.019 0.026 0.004 0.012 0.001 0.008 0.059 0.007 0.001 0.001

0.086 0.013 0.570 0.020 0.018 0.019 0.035 0.001 0.013 0.002 0.012 0.043 0.007 0.001 0.001

0.074 0.010 0.595 0.021 0.020 0.018 0.026 0.001 0.013 0.002 0.009 0.043 0.006 0.001 0.001

0.170 0.012 0.639 0.015 0.019 0.018 0.024 0.001 0.012 0.001 0.010 0.063 0.007 0.001 0.001

0.143 0.010 0.657 0.016 0.015 0.018 0.024 0.001 0.013 0.001 0.013 0.052 0.006 0.001 0.001

RelNo MechTest_Gauge YS PS UTS Elong

726840-1 10 328 325 489 21.2

726886-1 7.95 300 309 422 33.9

726887-1 7.95 296 310 417 29.3

726889-1 11.95 367 515 23.8

726890-1 10 324 331 465 25.4

Fce Time Fce Dropout RDT T RDT M RDT B FDTAIM FDT T FDT M FDT B CTAIM CT T CT M CT B

307 1200 1092 1063 1060 870 867 876 892 640 641 674 641

178 1223 1098 1079 1066 870 871 884 882 640 641 669 649

177 1210 1103 1069 1059 870 868 880 887 640 609 640 647

185 1236 1089 1067 1063 870 870 881 883 640 607 630 628

185 1239 1095 1091 1094 870 869 876 883 640 630 680 646

Product & annealing Details 

Process Variables

Mechanical Properties

Chemistry Factors

Figure 3. Format of data
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Figure 4. Pairs plot of response variables for the full data set
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The hot rolling process is illustrated in Figure 1. The slabs of steel first
pass through the Reheat Furnace. The temperature at which the slab
leaves the Reheat Furnace, previously called the Dropout Temperature,
is denoted RFT. The time spent in the Reheat Furnace, usually about 3
hours, is denoted FSTime and is given in seconds.

Next the slab passes through the Roughing Mill. The temperatures
on leaving the Roughing Mill were not provided by NZ Steel in the data
set for this project.

The steel then passes through the Finishing Mill where the exit tem-
perature, the Finisher Dispatch Temperature, is measured at the front,
middle and rear of the bar. The variables for these temperature read-
ings are FTHead, FTMid, and FTTail. The steel is finally coiled in the
Downcoiler. The temperature of the steel is measured before it reaches
the downcoiler, again at the front, middle and rear positions, giving
variables CTHead, CTMid and CTTail.

Steel performance is affected by chemical composition, most impor-
tantly by the carbon composition. To produce a particular grade of
steel, the percentage of carbon and possibly other alloying elements is
controlled to be within a given range. Some alloying elements appear
simply as residual elements due to the varying composition of the input
material, which in the case of NZ Steel, is comprised of iron-rich mineral
sands. The alloying elements included in the project data set, as per-
centage by weight, are carbon, silicon, manganese, phosphorus, sulphur,
chromium, nitrogen, vanadium and aluminium, denoted respectively C,
Si, Mn, P, S, Cr, N, V, Al.

Product details and annealing conditions are a heterogeneous group of
variables. Firstly the product (denoted Product) refers to the standard
to which the steel must conform. There are various standards used by
NZ Steel, but principally they are Australian/New Zealand, Japanese,
and American. The source of the particular standard is recorded in the
variable Std. The variable Type gives the broad category of the steel,
such as cold-rolled annealed (CRA), cold-rolled annealed drawing (CRA
drawing) etc. Chemical grade (Grade) specifies the chemical composi-
tion of the steel, and mainly reflects the carbon content. Dimensional
variables which have been recorded are the gauge at various stages, and
width (all in mm), and the weight of the coil in tonnes. Gauge mea-
surements are: HSMGauge, the gauge on leaving the hot-rolling mill;
CRGauge, the gauge on leaving the cold-rolling mill, prior to annealing;
and FinalGauge, the gauge of the final product. Reductions in gauge
brought about by the various rolling operations are recorded as per-
centages. The reductions recorded are: ColdRRedPcnt, the percentage
reduction in gauge from the hot-rolled thickness to the cold-rolled thick-
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ness; and TempRedPcnt, the percentage reduction in gauge from the
cold-rolled coil to the tempered coil after annealing. There are three
furnaces used for annealing, and FurnaceID records which was used for
a given coil. Coils are annealed in each of the three furnaces in batches
of 9, arrayed in a rectangular grid pattern as shown in Figure 5.

18File Reference: MISG2006.PPT
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Figure 5. Layout of coils within the annealing furnaces

A number of variables are used to identify batches and coils within
batches. Steel is produced and cast in 75 tonne batches, termed heats.
Chemistry can vary from heat to heat for a particular chemical grade
and the heat is recorded as Heat. PROCORDITM records the batch in
which the coil was annealed. The coil identifier is RelNo, and TestDate
and StartDateTime denote the date when the mechanical properties were
tested, and ostensibly both the time and date when the annealing process
commenced, but in reality only the date.

Finally, strength and elongation measurements differ according to the
direction in which the test was carried out since the mechanical proper-
ties are not isotropic. Most measurements have been carried out in the
longitudinal direction, that is parallel to the length of the coil, but some
have been carried out at 90◦ to the length of the coil. TestDir records
the test direction as either longitudinal or transverse. The hardness test
is not directional, and if only hardness has been tested, which is the case
for some products, TestDir is missing.
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NZ Steel provided data for 20 cold-rolled coil products, comprising
observations on between 100 and 2000 coils for each product, in total
around 12,000 coils with 43 variables recorded for each coil.

4. Statistical analysis

Most of the analysis was carried out using the statistical software R

(see [12]), but some use was also made of Minitab (see [10]). The data
was provided in the form of an Excel spreadsheet, and had been checked
for outliers and duplicates.

For the NZ Steel project at MISG 2005 a single model was developed
for the complete set of data, which comprised products of a number of
different types. Whilst this was satisfactory statistically, the model was
complex, and writing the computer program to implement the model
presented some difficulty. To make implementation easier, for the cold-
rolled steel data NZ Steel asked for four separate models to cover differ-
ent groups of products. The four analysis groups to be used were:

1 CRA Drawing
Cold-rolled annealed drawing steel. Defined by Type having the
value CRA drawing.

2 CRA Rerolled
Cold-rolled annealed rerolled steel. Defined by Type having the
value CRArerolled.

3 CRA Transverse
Cold-rolled annealed steel with mechanical properties measured
across the coil direction. Defined by Type having the value CRA
and TestDir the value T.

4 CRA Longitudinal
Cold-rolled annealed steel with mechanical properties measured
parallel to the coil direction. Defined by Type having the value
CRA and TestDir the value L.

4.1. Descriptive statistics

Before attempting to build any models, the data was examined to
obtain some idea of distributions and relationships between variables,
and to check for outliers or possible erroneous values. Descriptive anal-
yses were carried out for the complete data set and for the four analy-
sis groups individually. Categorical variables such as product and type
were tabulated, and pairwise tabulations were also obtained for these
categorical variables. Continuous variables were plotted and numerical
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Figure 6. Pairs plot of response variables for CRA Longitudinal analysis group

summaries obtained. The plots used were histograms and pairs plots. A
pairs plot is a collection of plots where each pair of variables is plotted
one against the other, with the plots being laid out in a grid. They are
useful in examining relationships among groups of variables and were
popularized by Chambers, Cleveland and others (see [2]).

The relationships between the different mechanical properties were
examined using a pairs plot shown in Figure 4. This plot is of the
complete data set and it is clear from the existence of two clouds of points
in each of the plots in Figure 4 that there are at least two groups in the
data. This makes it necessary to identify what characteristics of the data
cause the grouping if one is to predict the various mechanical properties
adequately. Plots of the data from the analysis groups described above
still indicate the presence of subgroups, but with the exception of the
CRA Rerolled group the pairs plots show a roughly elliptical cloud of
points, suggesting that an assumption of multivariate normality might
be reasonable. An example is the pairs plot for the CRA Longitudinal
group, Figure 6. In this plot the subplots involving HRB indicate the
presence of two groups. This is to be expected since this analysis group
is comprised of more than a single product.

The predictor variables were also examined using pairs plots. Pairs
plots were obtained for the chemistry variables and the processing vari-
ables, for the full data set and the analysis subgroups. These were ef-
fective in eliminating further outliers from the data set. At a later stage
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of the analysis it was discovered there were still duplicate observations
in the data set. After these were removed the numbers of observations
in the four analysis groups were as given in Table 1. A reference on the
consideration of outliers is [1].

Group Number of Observations

CRA Drawing 111
CRA Rerolled 1028
CRA Transverse 2793
CRA Longitudinal 4057

Table 1. Size of analysis groups

4.2. Modelling

A number of models were considered for each analysis group. The
simplest approach, which was used in the previous project is to use
a linear regression model, an approach we will term the multiple linear
regression model. When using this model no model fitting was attempted
since eliminating variables using t-tests or F -tests is known to produce
biases (see, for example, Harrell [6]). Some model comparisons were
made however. For the multiple regression models, two models were
fitted, one which included an interaction between the furnace and the
position of the coil within the furnace, and one without that interaction
term. A test was carried out for the significance of the interaction term
and the Akaike Information Criterion (AIC) was used to compare the
fit of the two models. See [15] for example, for this approach. The
reason for comparing these models was that some of the participants in
the Study Group for this project had included an interaction term when
fitting the multiple regression model and we wished to determine if it
was necessary.

The second approach used was to fit a generalized least squares model
which allowed for possible correlations between results for coils annealed
in the same batch. The implementation used to fit the generalized least
squares model was the package nlme, see [9], which is described in the
book [8]. A comparison was made between the generalized least squares
model which allowed for correlations between coils in the same batch and
the multiple regression model which assumes independent observations.
This was done using the likelihood ratio test and AIC. This test was
performed to determine if the more complicated generalized least squares
model was indeed necessary. For the CRA Drawing group, there are
only 111 observations and numerous batches have missing observations
for several tray positions. This resulted in a problem when trying to
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fit a generalized least squares model estimating the correlation within
batches between observations in different tray positions. Unfortunately
for the CRA Drawing group, this analysis could not be carried out.

Since there are four response variables of interest to NZ Steel, it seems
sensible to try and model these responses jointly. Two approaches were
considered: seemingly unrelated regressions and partial least squares.
Seemingly unrelated regressions (SUR) is an approach often used by
econometricians. The R package used to implement it was systemfit, see
[5]. A description of the methodology may be found in [4]. See also [16]
and [3]. SUR models were fitted, but in the present case the estimates
from SUR models are the same as from the separate multiple regression
models. This is because the same set of predictors is used for each
prediction equation and it can be shown theoretically that the prediction
equations from SUR are the same as those from fitting separate multiple
regression models.

Partial least squares (PLS) looks for a small number of ‘latent factors’
(linear combinations of the actual qualitative or quantitative predictor
variables) that account for much of the variation in the predictor vari-
ables and still predict the response variables well. PLS was implemented
for some of the data but is more useful for explanation of relationships
in terms of underlying latent variables than for prediction, or for cases
where the number of predictors exceeds the number of observations. PLS
is conceptually difficult also and does not appeal as a technique in a con-
sulting project due to the difficulty of explaining it to a client. Because
of these considerations we did not proceed with implementation of this
approach. A tutorial on PLS is given in [3]. A web-based introduction,
which also describes how to run PLS in the statistics package SAS, is
given in [14].

Diagnostic checks were performed on the models obtained and showed
that there were no serious violations of the regression assumptions.

Example code for fitting the models described is given in Appendix A.
The code is for the CRA Longitudinal analysis group, but similar code
was used for the other groups. Code is shown for fitting only one of the
four response variables, Yield. For the CRA Rerolled group, the models
also include the term TestDir, the indicator for the direction in which
testing of the mechanical properties was undertaken.

4.3. Results

For each analysis group three different models have been fitted (but
only two for CRA Drawing). In each case, four response variables have
been considered. In so far as it is possible to generalize about the re-
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Response Variable
Model Yield UTS ElongJIS5 HRB

Regression without interaction 11.42 8.77 2.03 3.64
Regression with interaction 11.27 8.61 2.02 3.62
Generalized least squares 11.51 8.90 2.05 3.69

Table 2. Standard errors for CRA Longitudinal analysis group

sults, formal tests generally suggested that the multiple regression model
with a term for the interaction between TrayPos and Furnace is a better
model for predicting the response variables. Besides this, formal testing
indicated that there is correlation within batches between observations
in different tray positions. Despite these results, what is also appar-
ent is that the estimated standard deviations of the error in the models
(which we will henceforth refer to as the standard errors) obtained from
the more complex modelling approaches are by and large very similar to
those from the simple approach of multiple regression without an inter-
action term between TrayPos and Furnace. For example in Table 2 the
standard errors are given for the CRA Longitudinal analysis group.

Comparing the standard errors for the simplest model, the multiple
linear regression model without interaction, to the other models, we
observe the following. If the interaction is added, the standard error is
reduced, but not by much. If the generalized least squares approach is
used, the standard error is increased, but not by much. The increase
is expected because this model takes into account that the observations
are not independent so the information available concerning the model
parameters is less than what is assumed in the regression model.

Examination of R-squared values also indicates that the more compli-
cated models generally do not have notably larger R-squared values.

Finally, we note that the NZ Steel project presenters have indicated
that they would prefer a simple model, in particular one without the
complication of an interaction between TrayPos and Furnace.

The above discussion suggests that the appropriate model might be
the simplest one, however we need to ensure that this approach is statis-
tically valid. Ignoring the possibility of correlations is not a problem: we
know from theory that the estimates in this case are unbiased, it is just
that the standard error is incorrect. We are only concerned with an ap-
propriate equation for predicting the response, not estimating variability,
so we can safely ignore the correlations. The fact that the standard errors
change so little between the models suggests that the predictions from
the models may be quite similar. Examination of the coefficients in the
models suggests this also. Comparison of the predictions obtained from
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Figure 7. Actual and predicted values for ElongJIS5 versus UTS for the CRA Lon-
gitudinal analysis group

the multiple regression models and the generalized least squares models
showed that the predictions obtained from the two types of models were
very similar.

The other concern we had when eliminating the two possible multi-
variate approaches, was that although we could predict the individual
responses satisfactorily, we might not have a suitable approach for pre-
dicting them jointly. To examine this we plotted the predictions from
our models compared to the true values for each pair of predictors. Two
plots, for the CRA Longitudinal group and the CRA Rerolled group are
shown as examples in Figures 7 and 8. It was clear from these plots of
pairs of response variables, that the predictions at least captured the ap-
propriate two dimensional relationships between the response variables.
Note that in order to be able to see individual points, a sample has been
taken of the actual and corresponding predicted values.

5. Conclusions and recommendations

Multiple linear regression models have been developed to predict the
mechanical properties of four groups of cold-rolled steel products pro-
duced by NZ Steel. The four groups of steels are Cold-Rolled Annealed
Drawing steel, Cold-Rolled Annealed Rerolled steel, Cold-Rolled An-
nealed Transverse steel and Cold-Rolled Annealed Longitudinal steel.
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Figure 8. Actual and predicted values for ElongJIS5 versus UTS for the CRA
Rerolled analysis group

More complex models were considered but the simple models proposed
provide satisfactory predictions and will be easy for NZ Steel to im-
plement. The models proposed may be used to simultaneously predict
the mechanical properties which are important to NZ Steel. The actual
models are given in Appendix B.

Acknowledgments

The project moderators are David Scott, Ken Russell and Judi Scheffer
(student moderator). They were ably assisted by a team of contributors:
Park Sang Kyoon, Duk-Soon Oh, Woong Jeung Park, Richard Penny
and Reg Rider who worked enthusiastically on the project and provided
ideas for the analysis.

The moderators are grateful to Walter Davis of Statistics New Zealand
for his suggestion to use the seemingly unrelated regressions methodol-
ogy.

We thank the NZ Steel representatives, Philip Bagshaw, Andrew Mackay
and Michael O’Connor, for presenting this project at MISG 2006. The
project was interesting and the project presenters were always willing
and able to answer our questions. Some of the text describing the pro-
cess and the schematic diagrams outlining the process stages and the
nature of the data have been taken from the documents provided by NZ
Steel.



48

Appendices

Appendix A: Sample R Code for the CRA Longitudinal
Analysis Group

### Model responses using linear regression

### Fit linear models for Yield

YieldFit <- lm(Yield~Gauge+factor(ChemGrd)+Width+Weight+

factor(FurnaceID)+factor(TrayPos)+HeatPeriod+

C+Si+P+S+Mn+Al+V+N+RFT+FSTime+FTMid+CTMid+

ColdRRedPcnt+TempRedPcnt,data=steelCRALong)

summary(YieldFit)

YieldFitInt <- lm(Yield~Gauge+factor(ChemGrd)+Width+Weight+

factor(FurnaceID)*factor(TrayPos)+HeatPeriod+

C+Si+P+S+Mn+Al+V+N+RFT+FSTime+FTMid+CTMid+

ColdRRedPcnt+TempRedPcnt,data=steelCRALong)

summary(YieldFitInt)

### Compare models

anova(YieldFit,YieldFitInt)

AIC(YieldFit,YieldFitInt)

### Fit linear models for Yield

### Include correlation

YieldFitCorr <- gls(Yield~Gauge+factor(ChemGrd)+Width+Weight+

factor(FurnaceID)+factor(TrayPos)+HeatPeriod+

C+Si+P+S+Mn+Al+V+N+RFT+FSTime+FTMid+CTMid+

ColdRRedPcnt+TempRedPcnt,

correlation=corSymm(form=~TrayPos|PROCORDITM),

data=steelCRALong)

summary(YieldFitCorr)

YieldFit <- gls(Yield~Gauge+factor(ChemGrd)+Width+Weight+

factor(FurnaceID)+factor(TrayPos)+HeatPeriod+

C+Si+P+S+Mn+Al+V+N+RFT+FSTime+FTMid+CTMid+

ColdRRedPcnt+TempRedPcnt,

data=steelCRALong)

summary(YieldFit)

### Compare models

anova(YieldFit,YieldFitCorr)

Appendix B: Fitted Models

Note that ChemGrd, FurnaceID and TrayPos are factors. In the models
below the coefficient of for example TrayPos(4) represents the contribu-
tion to the model when the variable TrayPos takes the value 4. When
the variable TrayPos takes another value, there is no contribution to the
model from this term. All coefficients are given to 4 significant figures.
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CRA Drawing

Yield = 18.83 + 7.872Gauge − 0.7395ChemGrd(110) + 0.04164Width

−1.220Weight + 8.302FurnaceID(2) + 0.3659FurnaceID(3)

−2.694TrayPos(2) + 0.5576TrayPos(3) + 0.6224TrayPos(4)

+8.907TrayPos(5) + 1.221TrayPos(6) − 0.3074TrayPos(7)

+8.655TrayPos(8) + 5.027TrayPos(9) − 0.01409HeatPeriod

+279.8C + 451.8Si + 693.0P − 55.39S + 134.8Mn − 268.4Al

+360.4V + 992.3N + 0.05245RFT − 0.00008396FSTime

−0.03414FTMid − 0.04441CTMid + 1.506ColdRRedPcnt

UTS = 270.4 − 23.51Gauge − 7.227ChemGrd(110) + 0.02772Width

−0.2837Weight + 5.192FurnaceID(2) + 0.9390FurnaceID(3)

−0.2477TrayPos(2) − 1.793TrayPos(3) − 2.820TrayPos(4)

+3.129TrayPos(5) − 1.170TrayPos(6) − 0.6993TrayPos(7)

+6.458TrayPos(8) + 1.687TrayPos(9) − 0.01701HeatPeriod

+562.2C − 206.8Si + 1032P − 325.6S + 83.44Mn − 100.6Al

+792.2V + 972.0N + 0.06282RFT − 0.00003020FSTime

−0.02207FTMid + 0.07574CTMid − 0.7443ColdRRedPcnt

ElongJIS5 = 62.56 + 0.9919Gauge − 0.005118ChemGrd(110) − 0.003922Width

+0.1423Weight − 0.2704FurnaceID(2) + 0.2016FurnaceID(3)

+0.3787TrayPos(2) − 0.9329TrayPos(3) − 0.7639TrayPos(4)

−0.6368TrayPos(5) − 1.048TrayPos(6) + 0.4639TrayPos(7)

−0.2238TrayPos(8) − 1.586TrayPos(9) + 0.002579HeatPeriod

−10.20C − 41.96Si − 119.0P − 184.5S − 26.55Mn + 89.66Al

−223.8V − 115.1N − 0.005502RFT + 0.00001020FSTime

+0.03081FTMid − 0.02180CTMid − 0.3123ColdRRedPcnt
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HRB = 10.89 − 14.44Gauge − 2.312ChemGrd(110) + 0.01330Width

−0.5006Weight + 2.247FurnaceID(2) + 0.7561FurnaceID(3)

−0.3688TrayPos(2) + 0.3205TrayPos(3) + 0.8581TrayPos(4)

+3.720TrayPos(5) + 0.7283TrayPos(6) − 0.2941TrayPos(7)

+1.266TrayPos(8) + 1.902TrayPos(9) − 0.004822HeatPeriod

+106.1C − 13.42Si + 285.4P + 43.93S + 49.41Mn − 90.60Al

−70.02V + 549.3N + 0.01349RFT − 0.000007709FSTime

+0.1127FTMid − 0.005384CTMid − 1.081ColdRRedPcnt

CRA Rerolled

Yield = 192.4 − 33.66Gauge − 157.2ChemGrd(210) − 3.594ChemGrd(320)

−17.29ChemGrd(810) + 8.981ChemGrd(904) − 0.01553Width

+2.137Weight + 8.162TestDir(T) + 8.878FurnaceID(2)

+4.225FurnaceID(3) + 9.580TrayPos(2) − 0.3675TrayPos(3)

−4.378TrayPos(4) + 2.074TrayPos(5) − 5.387TrayPos(6)

−4.022TrayPos(7) + 4.204TrayPos(8) − 4.867TrayPos(9)

−0.01199HeatPeriod + 367.4C − 387.9Si + 1690P − 562.3S

+72.53Mn − 536.5Al + 804.6V + 4441N + 0.1103RFT

+0.0001737FSTime + 0.109FTMid + 0.02980CTMid

−1.489ColdRRedPcnt + 4.110TempRedPcnt

UTS = 316.3 − 32.23Gauge − 10.19ChemGrd(210) + 39.44ChemGrd(320)

−16.12ChemGrd(810) + 51.95ChemGrd(904) − 0.009045Width

+1.856Weight + 9.207TestDir(T) + 6.801FurnaceID(2)

+3.191FurnaceID(3) + 9.189TrayPos(2) − 0.5508TrayPos(3)

−4.528TrayPos(4) + 1.425TrayPos(5) − 4.657TrayPos(6)

−4.723TrayPos(7) + 4.066TrayPos(8) − 4.131TrayPos(9)

−0.01555HeatPeriod + 292.9C − 134.1Si + 1580P

−572.7S + 34.23Mn − 320.2Al + 882.2V + 3863N

+0.1021RFT + 0.00009255FSTime + 0.01343FTMid

−0.003026CTMid − 1.467ColdRRedPcnt + 4.165TempRedPcnt
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ElongJIS5 = 8.427 + 7.487Gauge + 19.06ChemGrd(210) + 0.2297ChemGrd(320)

+2.352ChemGrd(810) + 1.396ChemGrd(904) − 0.002671Width

−0.1874Weight − 5.303TestDir(T) − 0.3325FurnaceID(2)

−0.2409FurnaceID(3) − 0.8703TrayPos(2) − 0.1660TrayPos(3)

+0.2097TrayPos(4) + 0.1729TrayPos(5) + 0.4504TrayPos(6)

+0.5942TrayPos(7) − 0.5070TrayPos(8) + 0.4469TrayPos(9)

+0.002165HeatPeriod + 3.532C − 8.556Si − 251.4P

+127.2S − 1.155Mn + 33.27Al − 186.3V − 594.8N

−0.01178RFT − 0.00001509FSTime + 0.01834FTMid

−0.007460CTMid + 0.2327ColdRRedPcnt − 0.3704TempRedPcnt

HRB = 65.77 − 0.1280Gauge − 21.61ChemGrd(210) − 6.972ChemGrd(320)

−1.807ChemGrd(810) − 12.75ChemGrd(904) + 0.01031Width

+0.2995Weight + 2.777TestDir(T) + 0.4480FurnaceID(2)

+0.5481FurnaceID(3) + 0.7414TrayPos(2) − 0.1203TrayPos(3)

−0.6823TrayPos(4) + 0.1694TrayPos(5) − 0.8143TrayPos(6)

−0.3443TrayPos(7) + 0.6945TrayPos(8) − 0.7665TrayPos(9)

−0.002774HeatPeriod + 35.29C + 3.656Si + 222.2P − 64.97S

+24.37Mn − 44.16Al + 171.5V + 425.7N + 0.01688RFT

+0.00001191FSTime − 0.02553FTMid − 0.007215CTMid

−0.2063ColdRRedPcnt + 0.3934TempRedPcnt

CRA Transverse

Yield = −153.2 + 17.31Gauge + 2.469ChemGrd(110) − 3.924ChemGrd(117)

−5.957ChemGrd(810) + 2.914ChemGrd(901) + 0.01841Width

+1.359Weight + 4.156FurnaceID(2) + 1.614FurnaceID(3)

+6.648TrayPos(2) + 2.290TrayPos(3) − 0.7916TrayPos(4)

+4.520TrayPos(5) − 1.356TrayPos(6) − 2.064TrayPos(7)

+3.760TrayPos(8) − 1.708TrayPos(9) − 0.01856HeatPeriod

+7.549C + 129.5Si + 556.4P − 500.2S + 7.050Mn − 508.4Al

+1915V + 3448N + 0.1461RFT + 0.0002614FSTime

+0.03898FTMid + 0.07089CTMid + 0.7458ColdRRedPcnt

+22.37TempRedPcnt
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UTS = 124.1 − 0.8591Gauge + 2.174ChemGrd(110) − 3.599ChemGrd(117)

+0.9762ChemGrd(810) + 3.828ChemGrd(901) + 0.008121Width

+1.618Weight + 3.749FurnaceID(2) + 2.013FurnaceID(3)

+6.083TrayPos(2) + 2.182TrayPos(3) − 0.5415TrayPos(4)

+3.905TrayPos(5) − 0.9550TrayPos(6) − 1.706TrayPos(7)

+3.315TrayPos(8) − 1.431TrayPos(9) − 0.01648HeatPeriod

+263.6C − 34.07Si + 878.3P − 393.9S + 72.57Mn − 323.2Al

+1744V + 2127N + 0.08632RFT + 0.0001710FSTime

+0.008018FTMid + 0.08372CTMid + 0.09105ColdRRedPcnt

−0.1623TempRedPcnt

ElongJIS5 = 96.36 − 0.3619Gauge − 0.5140ChemGrd(110) + 0.5449ChemGrd(117)

+0.8470ChemGrd(810) − 0.4827ChemGrd(901) − 0.003359Width

−0.2532Weight − 0.5667FurnaceID(2) − 0.1286FurnaceID(3)

−1.282TrayPos(2) − 0.5030TrayPos(3) − 0.009166TrayPos(4)

−1.130TrayPos(5) + 0.09319TrayPos(6) + 0.3112TrayPos(7)

−0.9060TrayPos(8) + 0.2323TrayPos(9) + 0.004282HeatPeriod

−28.32C + 0.8199Si − 108.9P − 1.160S − 0.7636Mn + 102.7Al

−285.9V − 608.7N − 0.01707RFT − 0.00002462FSTime

−0.004798FTMid − 0.01379CTMid − 0.2000ColdRRedPcnt

−1.068TempRedPcnt

HRB = −38.37 + 3.645Gauge + 0.9709ChemGrd(110) + 1.775ChemGrd(117)

−0.6527ChemGrd(810) − 0.02918ChemGrd(901) + 0.009440Width

+0.4601Weight + 1.080FurnaceID(2) + 0.3862FurnaceID(3)

+1.790TrayPos(2) + 0.2934TrayPos(3) − 0.4541TrayPos(4)

+1.786TrayPos(5) − 0.5970TrayPos(6) − 0.5179TrayPos(7)

+1.133TrayPos(8) − 0.5915TrayPos(9) − 0.009231HeatPeriod

+33.18C + 40.35Si + 195.4P − 79.51S + 15.77Mn − 106.2Al

+281.8V + 980.2N + 0.01643RFT + 0.00008381FSTime

+0.07200FTMid − 0.001427CTMid − 0.09760ColdRRedPcnt

−1.345TempRedPcnt



MULTI-VARIABLE RELATIONSHIPS IN A BATCH ANNEALING PROCESS 53

CRA Longitudinal

Yield = 41.86 + 1.899Gauge + 4.412ChemGrd(110) − 1.615ChemGrd(117)

−9.657ChemGrd(810) + 16.01ChemGrd(901) + 0.01359Width

+1.504Weight + 3.661FurnaceID(2) + 0.5215FurnaceID(3)

+7.542TrayPos(2) + 2.657TrayPos(3) − 2.450TrayPos(4)

+4.901TrayPos(5) − 1.414TrayPos(6) − 2.845TrayPos(7)

+5.396TrayPos(8) − 1.492TrayPos(9) − 0.02567HeatPeriod

+2.558C + 16.05Si + 480.3P − 399.1S + 46.45Mn − 445.9Al

+1358V + 3003N + 0.1225RFT + 0.0001667FSTime

+0.09031FTMid − 0.1573CTMid + 0.09511ColdRRedPcnt

−1.070TempRedPcnt

UTS = 245.5 − 0.5920Gauge + 9.086ChemGrd(110) + 6.227ChemGrd(117)

+3.118ChemGrd(810) + 21.42ChemGrd(901) + 0.009554Width

+1.264Weight + 2.909FurnaceID(2) + 0.4133FurnaceID(3)

+6.198TrayPos(2) + 2.320TrayPos(3) − 2.512TrayPos(4)

+4.379TrayPos(5) − 1.694TrayPos(6) − 2.776TrayPos(7)

+4.166TrayPos(8) − 1.581TrayPos(9) − 0.02014HeatPeriod

+257.8C − 77.05Si + 933.1P − 351.7S + 54.89Mn − 245.0Al

+1134V + 2159N + 0.08709RFT + 0.0001328FSTime

+0.03333FTMid − 0.1717CTMid + 0.2613ColdRRedPcnt

+0.07141TempRedPcnt

ElongJIS5 = 57.03 + 5.958Gauge − 0.4535ChemGrd(110) − 0.1174ChemGrd(117)

+1.690ChemGrd(810) − 1.931ChemGrd(901) − 0.0007079Width

−0.1726Weight − 0.3783FurnaceID(2) + 0.09220FurnaceID(3)

−1.101TrayPos(2) − 0.4353TrayPos(3) + 0.3329TrayPos(4)

−0.6332TrayPos(5) + 0.1531TrayPos(6) + 0.4637TrayPos(7)

−0.7549TrayPos(8) + 0.3074TrayPos(9) + 0.002178HeatPeriod

−18.53C + 12.20Si − 86.60P + 13.08S − 7.152Mn + 76.10Al

−239.2V − 500.5N − 0.01491RFT − 0.00001566FSTime

−0.008546FTMid − 0.002082CTMid + 0.1532ColdRRedPcnt

+0.6732TempRedPcnt
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HRB = 83.39 + 1.613Gauge + 0.5086ChemGrd(110) − 5.033ChemGrd(117)

−3.258ChemGrd(810) − 0.6399ChemGrd(901) + 0.004454Width

+0.3239Weight + 0.8603FurnaceID(2) − 0.1193FurnaceID(3)

+1.683TrayPos(2) + 0.5880TrayPos(3) − 0.6024TrayPos(4)

+0.8800TrayPos(5) − 0.2847TrayPos(6) − 0.8120TrayPos(7)

+1.191TrayPos(8) − 0.5431TrayPos(9) − 0.006508HeatPeriod

+39.68C + 10.42Si + 186.1P − 74.49S + 2.263Mn − 110.0Al

+349.3V + 735.0N + 0.01748RFT + 0.00005752FSTime

−0.02054FTMid − 0.06078CTMid − 0.09362ColdRRedPcnt

−0.7000TempRedPcnt
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