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Executive Summary

Flat fan nozzles atomize crop protection products, breaking them into
droplets. Droplet size matters - smaller droplets give better perfor-
mance, but very small droplets drift. We want to use mathematical
models to better understand how liquid properties affect droplet size.

There are three types of breakup: wavy sheet, perforation, and rim. In
wavy sheet breakup, increasing viscosity or surface tension increases
droplet size. To investigate further, we carry out direct numerical
simulations of jet breakup, which show that suface tension has little
effect, but increasing viscosity leads to fewer droplets. Decreasing the
jet velocity also results in fewer droplets, with a wider size distribution.

Each type of breakup involves primary breakup into cylinders of fluid,
then secondary breakup into droplets. We thus consider the breakup
of a cylinder of fluid. Direct numerical simulations suggest that within
the tested parameter range viscosity has little impact on droplet size,
however it does influence the timescale on which the instability evolves
considerably. Linear stability analysis suggests that increasing viscosity
increases the wavelength of the most unstable mode, which we expect
leads to larger droplets, and that it reduces the rate of breakup.

Perforations - holes in the sheet - also lead to breakup. We find how
the length fraction of the sheet that is void changes with time.

After breakup, the droplets continue to evolve. We develop a model,
based on a transport equation, for this process. A key parameter is
the breakup rate constant - larger values lead to more breakup, fewer
large droplets, and a narrower size distribution.

Together, these mathematical approaches improve our understanding
of how droplets form, and can be used to guide experimental work.
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1 Introduction

(1.1) Flat fan nozzles are used to atomise crop protection products, and their per-
formance is affected by droplet size. Knoche [14] claims that small droplets
are good for herbicide performance. If droplets are too small, however, they
drift. We want to understand how the liquid’s physical properties (viscosity,
surface tension, etc.) affect droplet size.

(1.2) Droplets form when liquid exits the nozzle as a sheet and then breaks up
via three different breakup mechanisms: wavy sheet, perforation, and rim.
Rim breakup produces the largest droplets, followed by perforation, then
wavy sheet instability. The objective of the Study Group was to investigate
what causes these breakup mechanisms, and how they are affected by the
liquid’s physical properties (viscosity, surface tension, composition, etc.)

(1.3) In this report, we present relevant results from the literature in section 2.
Then, section 3 is on direct numerical simulations. Section 4 is on the
breakup of liquid ligaments after the sheet has ruptured, section 5 is on
perforation, and section 6 is on the late stage droplet distribution. Finally,
section 7 contains our conclusions and suggestions for future work.

2 Literature review

2.1 The effects of liquid properties on droplet formation

(2.1.1) As expected, results in the literature show that increasing viscosity in-
creases droplet size. Gratkowski and Stewart [12] claim that “[thickening
agents] increase the viscosity of the water phase of spray solutions, thus
increasing the size of droplets during spray application”. Different visco-
sities lead to different flows, as shown in Fig. 1, and to different types of
breakup. Li and Ashgriz [17] show empirically that the type of breakup of
a liquid jet is dependent on a dimensionless number called the Reynolds
number,

Re =
ρU0L

µ
, (1)

where ρ is the liquid’s density, U0 is the characteristic velocity scale, L
is the characteristic length scale, and µ is the liquid’s dynamic viscosity
(notation is also defined in Appendix F). Ahmed et al [2] show similar
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Figure 1: The effects of varying sheet velocity and viscosity, from [2]

Figure 2: Figure from [20] showing the effects of inhomogeneities in the liquid.

results to [17], but with viscosity changing independently, rather than as
part of Re. While the large increase in viscosity in [2] - a factor of 80 -
may be infeasible for Syngenta’s application, we expect viscosity to have
an effect.

(2.1.2) Miller and Ellis show that an increase in surface tension increases droplet
size [20], but they note that it is unclear whether this increase in droplet
size is due solely to surface tension. They also consider the composition of
the liquid, finding that a more homogeneous liquid gives more controlled
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Figure 3: Different Reynolds numbers give different breakup regimes, from [17]

results for the distribution of the liquid, as shown in Fig. 2.

2.2 Rim breakup

(2.2.1) Changing Re results in different types of breakup. Specifically, Fig. 3
shows that, for Re <∼ 1000, a sheet has yet to form (instead the jet
breaks up due to a capillary instability). For Re ∼2000-2400, a smooth
(closed) sheet forms which exhibits a Plateau-Rayleigh type rim insta-
bility, but without waves. For higher Re, ∼2500-3000, an open sheet
forms, which breaks up at the bottom, showing wavy sheet instability.
For Re > 3000 the flow becomes turbulent and unstable.

(2.2.2) We are ideally want an open sheet with minimal rim breakup (since rim
breakup results in the largest droplet sizes). We thus want to adjust the
liquid properties such that the corresponding value of Re is achieved -
for example, we could increase the viscosity to a degree where the rim is
stable, but the droplet size is small enough.

2.3 Wavy sheet instability droplet size

(2.3.1) In the wavy sheet instability, waves form on the liquid sheet, then liga-

3
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ments of liquid separate off, breaking down further into droplets. (We
present a simple stability analysis for liquid sheet breakup, exploring
the stability of waves on the sheet, in appendix A.) By looking for the
wave with the maximum growth rate, assuming that ligaments of half
this wavelength break off, and that these ligaments break down by the
Rayleigh-Plateau-Savart instability (see section 4), Fraser et al. [8] (neg-
lecting viscosity) and Dombrowski and Johns [6] (including viscosity) find
expressions for droplet sizes. The latter is

dD =

[
3π√

2

]1/3
dL

[
1 +

3µ

(ρσdL)1/2

]1/6
, (2)

where dD is the droplet diameter, µ is the liquid’s dynamic viscosity, ρ
is the liquid’s density, σ is the surface tension coefficient, and dL is the
ligament diameter,

dL = 0.9614

[
K2σ2

ρaρU4

]1/6 [
1 + 2.60µ3

√(
Kρa4U7

72ρ2σ5

)]1/5
, (3)

where K is the liquid sheet thickness x distance from the source, ρa is
the density of the surrounding air, and U is the sheet velocity.

(2.3.2) In equation (2) low surface tension leads to small droplets, and high
viscosity leads to large droplets, although as noted in [6], “the effect of
viscosity on drop size is dependent on the other operating conditions,
being greater for liquids of low density and surface tension”. Here, visco-
sity appears as part of the Ohnesorge number µ/

√
ρσL, a dimensionless

number that characterises the relative importance of viscous and surface
tension forces [32], where L is a characteristic length scale - here it is the
ligament diameter. The relative importance of inertial and surface ten-
sion forces is characterised by the Weber number [33], ρU2

0L/σ, where U0

is the characteristic velocity scaling. Varying these dimensionless num-
bers independently, as was discussed for Reynolds number in section 2.2,
provides insight into the different breakup mechanisms.
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3 Direct Numerical Simulations

3.1 Introduction

(3.1.1) The dynamics of liquid sheet breakup emerging in agricultural sprays as a
result of using flat fan nozzles is a highly complex and nonlinear process.
The typical velocities of at least 10 m/s, as well as the large range of
parameters to be varied make this problem particularly challenging.

(3.1.2) Experimental, analytical, and numerical approaches are all useful in pro-
viding insight into drop formation. Experimental methods give a direct
line of investigation into the target flow properties, but are often re-
stricted by laboratory time, equipment, video technology limitations and
the sheer size of the parameter space. Analytical techniques offer a funda-
mental understanding, producing useful formulae, which can then drive
innovation further in the design pipeline. They are sometimes, however,
restricted to the early stages of the flow, when the processes are linear
or weakly nonlinear and will make simplifying assumptions to make the
problem tractable. Direct numerical simulations offer a bridge between
the two. They are “direct” because the full Navier-Stokes equations are
solved, taking into account both air and liquid properties, as well as the
full set of interfacial conditions. In the early stages, numerical results
can cross-validate analytical progress. In the late stages, accurate nume-
rical experiments delve into nonlinear regimes beyond the reach of other
techniques, offering detailed information at any timestep and from an-
gles difficult to construct experimentally. Although they need significant
computational resources (processing power, memory, data handling al-
gorithms), they serve to reduce the search space, guiding experimental
investigations in the right direction.

(3.1.3) We use direct numerical simulations (the numerical methodology is ex-
plained in Appendix B.1) to investigate two related problems:

1. The primary breakup of the liquid sheet (wavy sheet instability) into liquid
cylinders.

2. The secondary breakup of the liquid cylinders into droplets through the
Rayleigh instability.
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Figure 4: Left: Sketch of the two-dimensional computational domain and key pa-
rameters. Right: Snapshot of the flow, from left to right: adaptive computational
grid, refined with respect to vorticity and interfacial position; fluid phases (liquid
and air); vertical velocity; horizontal velocity.

3.2 Jet atomisation in two dimensions

(3.2.1) In order to better understand the target regime and because the liquid
sheet is thin, we consider the breakup problem in two dimensions: a
cross-section through the main body of the sheet, excluding any rim
effects. Liquid fragments break off from the main jet as columns, which
subsequently breakup into droplets, as discussed in section 3.3. Here the
primary focus is the wavy sheet instability and the dynamics in the main
body of the jet.

(3.2.2) The domain and an example snapshot are shown in Fig. 4, which also
outlines the size of the inlet region (around 1 mm) and the velocity of
the jet, taken to be 16 m/s, in line with typical operational conditions.
Outflow conditions are prescribed on either side of the domain, as well as
at the bottom. We turn our attention towards gathering and analysing
information about the formation of droplets, their number and their size
distribution during the breakup, as in Fig. 5. It illustrates the tracking
of O(1000) droplets, which, at a given time step far enough into the
flow evolution, have a size characterised by a log-normal distribution.
Similarly, we target variations in the parameters of interest:

6
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Figure 5: Example quantitative data obtained from a typical direct numerical
simulation. Top: number of droplets in the computational domain in time, with a
specific timestep selected in order to study the drop size distribution (bottom).

• Jet velocity 4 m/s < U < 16 m/s

• Surface tension coefficient 0.025 N/m < σ < 0.072 N/m. The upper bound
represents water, while the lower bound is given by the declared threshold
given any alterations of the liquid formula (for example through surfactants).
The velocity is fixed at 16 m/s in all cases.

• Viscosity 0.001 kg/m·s < µ < 0.016 kg/m·s, with the same rationale as above
and using the values declared as being of interest.

Fig.6- Fig. 8 summarise the results, indicating the number of droplets formed as
a function of time in each of the three studies, with three subcases each. Distribu-
tions of the drop sizes at selected timesteps are provided in order to complement
the raw numerical data, with bar colours on the right of each figure corresponding
to the counterpart line plots on the left.

Lowering the velocity of the jet (Fig. 6) reduces the number of droplets formed,
and impacts their distribution. In the largest velocity case, a relatively clean
spread of the droplets between 100 µm and 500 µm is observed, which becomes
progressively flatter as the jet velocity is lowered, with three times fewer droplets
when the jet speed is set to 4 m/s. In this case droplets larger than 500 µm in
diameter are also clearly represented, which is less pronounced at higher velocities.

7
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Figure 6: Varying velocity U from 4 m/s - 16 m/s: its effect on the number of
droplets (left) and their distributions at a selected time (right).

Figure 7: Varying surface tension σ from 0.025N/m - 0.072N/m: its effect on the
number of droplets (left) and their distributions at a selected time (right).

8
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Figure 8: Varying viscosity µ from 10−3 kg/(m·s) - 16 · 10−3 kg/(m·s): its effect
on the number of droplets (left) and their distributions at a selected time (right).

Interestingly, the variation in surface tension (Fig. 7) has little impact on the
number of droplets (with the current grid resolution at least), but it does make
the size distributions cleaner and shift slightly towards the smaller size. This
may in part be due to the fact that the window of variation is quite small and
the regime even for the highest surface tension coefficient chosen is already quite
violent for the instability targeted by these computations. Surface tension may
of course affect the rest of the dynamics (perforations, rim instabilities, Rayleigh
breakup) in a different manner.

As viscosity is increased (Fig. 8) we reach a configuration with one large liquid
volume (the body of the jet), out of which is the occasional pinch-off, with fewer
droplets as this parameter is increased. We thus conclude that viscosity is one of
the primary factors affecting the initial wavy sheet instability.

3.3 The Rayleigh instability

(3.3.1) Once liquid columns are formed as a result of the primary/wavy sheet
instability, they undergo a secondary breakup in the form of a Rayleigh
instability, resulting in interfacial rupture and drop formation with ti-
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(a) t = 0.1. (b) t = 0.8.

Figure 9: Snapshots of the Rayleigh instability developing on a liquid column as
part of a full three-dimensional simulation at two selected timesteps.

mescales and size characteristics as discussed in classical analytical work
dating back to the late 19th century. Section 4 contains a review and
rederivation of some of the key results in this flow.

(3.3.2) The stability of an axisymmetric column of liquid is one of the most strin-
gent tests for computational fluid dynamics packages, with the multi-scale
nature of the flow and the interfacial rupture posing numerical challen-
ges that are often tested to ensure robustness of implementation. For the
package we use, Gerris, a discussion on this topic and extensive validation
with the results of Rayleigh and Weber have been described by Popinet
[22]. The key parameter in the flow is the so-called Laplace number

La =
σL

ρν2
, (4)

with σ denoting the surface tension coefficient, L the reference lengths-
cale, ρ the liquid density and ν = µ/ρ its kinematic viscosity. We consider
four different cases of µ ranging from 10−3 Pa·s to 8 · 10−3 Pa·s. We note
that much higher viscosities are possible in the target application.

(3.3.3) The remaining parameters are for the classical water-air case, with σ =
0.072 N/m, ρ = 998 kg/m3 and L = 50 µm chosen as a reference lengt-
hscale. Two snapshots of the flow evolution are presented in Fig. 9, with
the plot at the later time step suggesting the formation of two droplets
of different sizes, with radii that are tracked over time. To ensure a fast
runtime for the full three-dimensional implementation, we have used all
available symmetries and are solving over one eighth of the domain. Each
direct numerical simulation ran for 8 hours on high performance com-
puting clusters; the adaptive mesh refinement (carefully crafted around

10
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curvature criteria for the pinch off) allows us to run these on a reasonable
timescale.

(a) Evolution in time of the normalised radius of
the largest drop.

(b) Comparison to experi-
mental results [16] in the in-
viscid case.

Figure 10: Variation of liquid viscosity and its effect on the Rayleigh instability.

(3.3.4) Fig. 10 provides an outline of the results, starting with a comparison of
the least viscous case with the experimental work of Lafrance [16], as well
as previous analytical results on the right hand side. We find excellent
agreement between both the large and the small drop radii for the most
unstable wavenumber in this setting, giving us confidence moving forward
with the parameter variation. First, we note that the range of viscosities
chosen is well within the allowed operational envelope, with the largest
one limited by the timescale of the instability. A much larger liquid
viscosity results in a very slow development of the flow. There are two
noticeable features of the results in Fig. 10a:

• Viscosity has virtually no impact on the final drop size, with the radius
changing by less than 1% from the least to the most viscous case, albeit in
the right direction (larger viscosity leads to larger radius).

• Increasing the viscosity damps the oscillation considerably. An idealised in-
viscid case (zero viscosity) would oscillate indefinitely without any damping,
however the µ = 10−3 Pa·s case is a low viscosity, allowing it to be compared
to theory.

11
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Since the results of the previous subsection indicated significant variation of the
ligament formation properties with respect to changes in viscosity, it is
interesting to note that the secondary breakup appears to be much less
sensitive, at least in terms of final drop sizes. We do underline however
that this is in an ideal setting in which the air flow surrounding the liquid
column is stationary.

3.4 Summary

(3.4.5) The main outcomes of this section are:

• Development of a versatile implementation capable of qualitative and quan-
titative study of jet breakup and drop dynamics.

• Variation of velocity, density, viscosity, surface tension within the desired
operational envelope is possible, and several numerical experiments on the
wavy sheet instability have been conducted in two dimensions.

• Lowering the velocity of the jet decreases the number of droplets from the
primary breakup and significantly widens their size distribution.

• Increasing viscosity strongly reduces primary breakup in that the liquid sheet
remains almost intact and very few liquid columns form.

• Varying the surface tension coefficient within the relatively small given range
produced a negligible effect on the primary wavy sheet instability.

• The secondary instability (breakup of liquid columns into droplets) has been
studied in a full three-dimensional context in the absence of an external flow.

• No significant effect of viscosity on the drop radii has been found, however
the evolution to a steady state is strongly affected, with viscosity strongly
damping the oscillations following the interfacial rupture and relaxation of
the drop shapes.

Many of the results and their subsequent post-processing and analysis have been
adjusted to account for the time window of the study group, in which tangible
progress was obtained in the order of a few days. On longer timescales, several
exciting research branches present themselves on both fundamental and practical
sides of the project, and they are outlined in section 7.1.

12
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4 Linear stability of an axisymmetric column of

liquid

4.1 Introduction

(4.1.1) The three breakup mechanisms (wavy sheet, perforation, rim) all result
in a cylinder of liquid breaking up into droplets. In wavy sheet breakup,
ligaments of the sheet break off and recoil into cylinders before disinte-
grating into droplets [6]. In rim breakup, surface tension forces at the
edge of the sheet lead to a cylindrical rim, which then breaks into drop-
lets. For perforations, the growing holes slowly merge, forming a web of
filaments that breaks up into individual ligaments. Thus, we revisit the
classical studies of the breakup of a cylinder of fluid that undergoes small
perturbations to its steady state.

(4.1.2) Rayleigh [24] demonstrated that a cylinder of inviscid fluid breaks up
due to surface tension if the cylinder is slightly perturbed (the Rayleigh-
Plateau-Savart instability). We begin by considering the more general
case of two viscous fluids: a cylinder of fluid 1 in an infinite pool of
fluid 2 (think water-in-air), and derive the linear stability problem follo-
wing Tomotika [27]. We then neglect the air at leading-order, since the
viscosity and density ratios are so small, leading to Weber’s findings [31].

(4.1.3) We aim, in this section, to investigate how changing the viscosity changes
the wavelength of the most unstable mode. Droplet sizes could then be
estimated for a given initial cylinder radius. This analysis is also useful
for comparison with the numerical simulations of section 3.

4.2 Stability analysis of jet breakup

(4.2.1) We consider, as shown in Fig. 11, an infinite cylinder of fluid 1 lying
in a bath of fluid 2. The cylinder has radius r = a, where (r, θ, z) is
a cylindrical coordinate system with the z-axis coinciding with the axis
of the cylinder. In this initial state, there is no flow and the difference
in the hydrostatic pressures in the two fluids balances the forces due to
surface tension on the interface. The density and viscosity of each fluid
are denoted by ρi and µi for i = 1, 2 respectively, while the coefficient
of surface tension is denoted by σ. We neglect gravity because the very

13
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z

r

θ

Fluid 2

Fluid 1

a

Figure 11: A cylinder of radius of a of fluid 1 lies within an infinite bath of fluid
2 (dashed line). This steady state undergoes sinusoidal perturbations in the z-
direction and we look for axisymmetric solutions of the resulting motion subject
to suitable boundary conditions.

short timescales mean its effect is small. The analysis for this general
case is given in Appendix C.1.

(4.2.2) In the limit in which the effects of air are small (Weber’s limit), we obtain,
as shown in Appendix C.1, a dispersion relation (62). We set

s =

(
µ1

ρ1a2Oh

)
s̄, k =

k̄

a
, (5)

where s is the growth rate, k is wavenumber, and an overline indicates
scaled variables. We find, after some further manipulation of the disper-
sion relation, that

k̄(k̄2−1) = 4Oh3/2k̄3
√
s̄+ Ohk̄2

I0(Oh
−1/2
√
s̄+ Ohk̄2)

I1(Oh−1/2
√
s̄+ Ohk̄2)

+2Ohk̄s̄−(s̄+2Ohk̄)2
I0(k̄)

I1(k̄)
,

(6)
where the Oh is the Ohnesorge number with characteristic lengthscale a,
the radius of the cylinder, and I0, I1 are modified Bessel functions of the
first kind.

(4.2.3) Varying the Ohnesorge number allows us to examine the impact of visco-
sity on the maximum wavenumber, giving a dominant wavelength for the
breakup of the cylinders into droplets. Firstly, Oh = 0 gives Rayleigh’s
solution [24]:

s =

(
k̄(1− k̄2)I1(k̄)

I0(k̄)

)1/2

. (7)
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Figure 12: The scaled growth rate of perturbations s̄ as a function of the scaled
wavenumber k̄ for various values of the Ohnesorge number. The solid black line
indicates the inviscid Rayleigh solution.

We compare this inviscid result with various small values of Oh – note,
for water and a cylinder of radius of 50 micrometers, Oh ≈ 5.3 × 10−3

– in Fig. 12. By increasing the viscosity, we decrease the wavenumber
for which s̄ is largest: hence, the wavelength of the most unstable mode
increases. However, it is also apparent that increasing Oh also decreases
the growth rate, so viscosity appears to increase the wavelength of the
dominant mode, but to reduce the rate of breakup. We plot the maximum
wavenumber and growth rate as a function of the Ohnesorge number in
Fig. 13, which confirms our findings.

4.3 Summary

(4.3.1) In this section, we have shown that viscosity increases the wavelength of
the most unstable mode in Rayleigh jet breakup, suggesting that the re-
sulting droplets are larger. This linear analysis, however, is only valid in
the early stages of breakup, and nonlinear effects will become important
as the perturbations grow, but it does provide a useful benchmark for
simulations. More physics could be included in the model in (61), alt-
hough investigations of that determinant are likely to require numerical
treatment.
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Figure 13: The scaled maximum wavenumber k̄max and the corresponding growth
rate for a range of Ohnesorge numbers. Increasing viscosity decreases both k̄max
and s̄max.

5 Perforations

5.1 Perforation of a thin sheet

(5.1.1) Consider a liquid sheet from a nozzle’s aperture. At some distance from
the aperture, the sheet perforates, causing a void, which grows in size.
Denoting the void radius as rv, the rate at which the void expands radially
is given by

vr ≈
√

2γ

hρ
, (8)

where γ is the surface energy per unit area, h is the sheet thickness
(varying with distance z̃ from the aperture, assumed constant across the
sheet width) and ρ is the liquid density (assumed constant).

(5.1.2) If the initial sheet width is w0 and the sheet fans at angle θf from either
side of the aperture, then the sheet width w at a distance z̃ downstream
from the aperture is,

w(z̃) = w0 + 2z̃ tan θf .
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By conservation of mass, the cross-sectional area of the sheet must remain
constant, so, denoting the initial thickness as h0,

w(z̃)h(z̃) = w0h0, h(z̃) = w0h0/(w0 + 2z̃ tan θf ).

Far from the aperture z̃ >> w0, we approximate the radial velocity of
void expansion by

vr ≈

√
4γy tan θf
w0h0ρ

=
drv
dt
, (9)

where t is time. With a constant liquid sheet velocity U , if the perforation
starts at z̃0, at time t its centre is at z̃(t) = z̃0 + Ut. We then integrate
(9) to get

rv ≈
2

3U

√
4γ tan θf
ρw0h0

[(z̃0 + Ut)3/2 − z̃3/20 ].

From this expression we obtain the length fraction of the sheet that is
void at time t,

fvoid =
4r

w
≈ 2

3U

√
γ

ρw0h0 tan θf

(z̃0 + Ut)3/2 − z̃3/20

z̃0 + Ut
,

where again we have used z̃ >> w0.

5.2 Webbing Thickness and Volume

(5.2.1) Next, we consider what happens to the liquid that leaves the voids and
moves to the sheet. Here, we suppose that this displaced liquid forms a
torus encircling the void that it left. Denoting the volume of liquid that
would fill the perforation as Vp, the volume of an annular ring around
the void existing prior to the torus as Vr and the torus volume as Vt,
conservation of volume gives

Vt = Vr + Vp, 2π(rv +Ri)πR
2
i = π(R2

o − r2v)h+ πr2vh.

Here Ro is the outer radius of the annulus, and Ri = (Ro − rv)/2 is the
inner toroidal radius. Thus we obtain the outer radius by solving the
cubic equation

π(R3
o −R2

orv −Ror
2
v + r3v) = 4hR2

o.
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6 Late stage droplet size distribution

(6.0.1) The droplet breakup has three stages. The early stage breakup – the
primary breakup into cylinders, and the secondary breakup into drop-
lets – occurs near the nozzle, and the late stage breakup occurs further
downstream, where a droplet distribution already exists. We model this
late stage breakup as the evolution of the droplet distribution, coupling
it with the early stage breakup through the initial distribution. We aim
to predict the size distribution of the droplets that actually reach the
ground or crops.

6.1 Model formulation

(6.1.1) We model the late stage droplets with a transport equation:

∂

∂t
f(V,x, t)+∇·(f(V,x, t)uD) = B(V,x, t)+C(V,x, t)+S(V,x, t), (10)

where V is droplet volume, x is distance across the flow, t is time,
f(V,x, t) is the droplet size distribution function, uD is the droplet velo-
city, B(V,x, t) is the breakup rate, C(V,x, t) is the coalescence rate and
S(V,x, t) is a source term.

(6.1.2) We take slices across the flow to get the domain shown in Fig. 14. We
assume a steady velocity field that fans away from the nozzle and is
symmetric around the midpoint. The periodicity of the nozzle array
suggests uD(0) = uD(1) = 0 and symmetry about x = 1/2 suggests
uD(1/2) = 0. The imposed form, as shown in Fig. 15, is therefore

uD(x) = x(1− x)(x− 1/2). (11)

(6.1.3) The literature surveys many phenomenological models - they have para-
meters that must be fit by experimental data - describing the dynamics
for both the coalesence and breakup of droplets in a mist (see [19, 30] and
references within). In this work, we neglect coalescence (Appendix E.1
explains why) and, since we have no experimental data, we implement
a simple breakup kernel, following [13], to demonstrate evolution of the
distribution. The derivation of the breakup term is given in Appendix
E.3.

(6.1.4) The distribution is advected by the imposed velocity field (11), and al-
tered by the breakup dynamics. A crucial dimensionless parameter is
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x0 1

t

Figure 14: Schematic of the one-
dimensional domain.

Figure 15: One-dimensional ‘fan-
ning’ velocity.

the ratio of the typical time for a droplet to travel from the nozzle to
the crops, to the characteristic timescale of the evolution of the droplet
distribution, (10). When this ratio is small, the droplet size distribution
evolves only a small amount during secondary breakup. When this ratio
is large, however, the initial distribution evolves substantially. We find,
in Appendix E.2, that a steady state cannot exist for a nontrivial velocity,
but we are unconcerned since the evolution occurs only for finite time.

6.2 Numerical results

(6.2.1) To simulate the evolution, we implemented a high-resolution, central,
conservative finite-volume scheme [15]. The domain is discretised to Nx×
Nv resolution, where Nx and Nv are the numbers of grid points for x and
V respectively. The values for the parameters used in the simulations are
given in Table 1.

(6.2.2) As discussed above, f(V, x, t = 0) should come from predictions of the
early stage breakup. Here, we assume a simplified constant distribution
across the domain, i.e. f(V, x, t = 0) = 1 for all (V, x). Results for the
evolution of the full predicted droplet size distribution function are given
in Fig. 16 for four instances in time.

(6.2.3) The evolution of the size distribution in Fig. 16 acts in the x-dimension
to advect droplets from the centre point at x = 1/2, moving them out to-
wards the edges. In the V -dimension we observe that large droplets, that
is, large V , break up to produce smaller droplets, so the distribution thic-
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Parameter Value Unit

ρa air density 1 kg m−3

ρ liquid density 103 kg m−3

σ surface tension coefficient 2.5 ×10−2 N m−1

µ liquid viscosity 9 ×10−4 Pa s−1

U0 characteristic velocity scaling 20 ms−1

D characteristic droplet diameter scaling 10−4 m

Nx Number of grid points for x 100 -

Nv Number of grid points for V 70 -

Table 1: Parameter values used in numerical simulations.
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Figure 16: Droplet size distribution function at four times using b0 = 1.

kens above smaller values of V . This happens in a nonmonotonic manner:
the critical Weber number prevents droplets below some threshold from
breaking up, since surface tension forces dominate the dynamics. Very
small droplets are, therefore, only produced in very asymmetric (and less
likely) breakup events.

(6.2.4) Fig. 17 shows a slice of the drop distribution at x = 0 and t = 1 for
various values of the breakup rate constant b0. For larger values of b0,
more breakup has occurred, there are fewer large droplets, and the size
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Figure 17: Droplet size distribution function as a function of V with varying values
for b0.

distribution is narrower. The shapes of these distributions qualitatively
match the distributions produced by the direct numerical simulations,
and are produced in a fraction of the computing time.

(6.2.5) From these plots we see that the two key parameters driving the evolution
of the distribution are the breakup rate constant b0 and the critical Weber
number. These two parameters could be tuned, using the droplet material
properties, to obtain the most desirable distribution, once the functional
dependence of b0 on these parameters is experimentally determined.

6.3 Summary

(6.3.1) We have presented a model governing the evolution of the droplet size
distribution. The equation is driven by breakup alone, as an assumed
large Weber number results in negligible coalescence. We derived an
expression for the rate of breakup for the droplets. Note that the validity
of the predictions of this model rely heavily on the initial distribution at
t = 0 from the early stage breakup, and the value taken for b0. We expect
b0 to depend on the physical parameters in the system, and suggest an
empirical correlation be used to prescribe a value.

(6.3.2) We imposed an assumed velocity field, but a more realistic approach

21



Syngenta ESGI130

is coupling the evolution of the droplet distribution with the governing
equations for the velocity field. This, however, is computationally expen-
sive. Although simplified, our approach provides fast predictions for the
final drop size distribution.

7 Conclusions

(7.0.1) We used several mathematical models to improve understanding of how
liquid properties affect droplet size. Direct numerical simulations showed
that, within the tested parameter range, decreasing velocity gives fewer
droplets, but with a bigger size distribution, in the primary breakup.
Increasing viscosity reduces the primary breakup, but has little effect on
the secondary breakup, and surface tension has a negligible effect. Linear
stability analysis suggests that increasing viscosity leads to larger drops,
but this analysis is only valid in the early stages of breakup. Perforations
may form in the liquid sheet, and we found an equation for how much of
the sheet (the length fraction) is void, due to perforations, at time t. We
modelled the late stage drop evolution using a transport equation, and
solved this numerically for a uniform initial droplet distribution, finding
that the key parameters driving the evolution of the distribution are a
breakup rate constant b0 and the critical Weber number.

(7.0.2) These mathematical models can be used together - for example, the li-
near stability analysis can be compared with the early stage direct nume-
rical simulations when looking at the secondary breakup, and the intiial
droplet distribution for the transport equation comes from the results of
modelling that secondary breakup. Using the mathematical models im-
proves our understanding of the mechanisms by which breakup occurs,
and can guide experimental work.

7.1 Future work

(7.1.1) The following future work would further understanding of the effects of
liquid properties on droplet sizes.

Experiments to:

• Isolate the influence of particular dimensionless numbers.
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• Characterise the air flow - the air density could be reduced, for example, in
experiments in a vacuum chamber.

• Detect the thickness of the sheet - a critical parameter that is missing from
our work at present - using interferometry.

• Measure the flow in the sheet, using Particle Image Velocimetry [34].

• Gather more information about inhomogeneities in the flow - knowing where
they are is important for understanding their effect.

Theory on:

• A sheet in the generalised lubrication (thin film) theory, looking either at
the 1D problem for a sheet or disk, or at the 2D problem to investigate edge
effects, with the thickness of the sheet being a function of distance and angle
from the source. 1

• Each of the three breakup modes - wavy sheet, perforation, and rim - to gain
more understanding of relevant parameters.

• Providing an accurate initial condition to the late stage droplet distribution
model, examining its breakup rate constant b0, and looking further into how
to incorporate the velocity field.

Numerics with2:

• An improved numerical methodology to target lower drop sizes (below 100 µm)
and a more extended study on the variation in the parameters of interest,
obtaining detailed information on the drop statistics.

• More specific (than the two-dimensional jet) configurations in either free or
bounded environments.

• A non-zero air velocity in the background, which requires a full three-dimensional
investigation.

• Simple non-Newtonian extensions of the developed flow models.

• A full two-stage model in which the droplets emerging from the primary
instability are treated as cylinders, which are then subject to breakup under
the Rayleigh instability.

1 For more on this approach, please contact James Sprittles.

2 For more on this approach, please contact Radu Cimpeanu.
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Figure 18: Infinite sheet (left) and side view (right).

A A simple instability analysis of fluid sheet bre-

akup

(A.0.1) In this section, we find how the stability of a fluid sheet changes with
surface tension and velocity. Consider, as shown in Fig.18, an infinite fluid
sheet of thickness h = 2h̃ moving at speed U in the positive x direction
through ambient fluid that is moving at a speed Ua. For simplicity, we
ignore gravity and atmospheric pressure. We assume there is a symmetric
configuration about the centre of the fluid sheet, meaning that we need
to consider equations of motion for both the fluid in the sheet and the
ambient fluid. We also assume potential flow, so we have the following
equations for the velocity potential φ in the fluid sheet:

(A.0.2)
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, −h̃ 6 y 6 h̃ (12)

∂ϕ

∂t
+

1

2
|∇ϕ|2 +

p

ρ
= cs, y = h̃(t, x) (13)

∂h̃

∂t
+
∂ϕ

∂x

∂h̃

∂x
=
∂ϕ

∂y
, y = h̃(t, x) (14)

∂ϕ

∂y
= 0, y = 0, (15)

where p is pressure in the fluid and cs is a constant.

(A.0.3) The equations for the velocity potential ψ in the ambient fluid are:

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0, h̃ 6 y <∞ (16)

∂ψ

∂t
+

1

2
|∇ψ|2 +

pa
ρa

= ca, y = h̃(t, x) (17)
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∂h

∂t
+
∂ψ

∂x

∂h

∂x
=
∂ψ

∂y
, y = h̃(t, x) (18)

lim
y→∞

ψ = 0, (19)

where pa is the pressure in the ambient, and ca is a constant.

(A.0.4) The interfacial condition for the pressures is:

ps − pa = −σ ∂2xh̃

(1 + (∂xh̃)2)
3
2

, y = h̃(t, x). (20)

The combined interfacial condition is:

ρcs−ρ
∂ϕ

∂t
−ρ

2
|∇ϕ|2−ρaca+ρa

∂ψ

∂t
+
ρa
2
|∇ψ|2 = −σ ∂2xh̃

(1 + (∂xh̃)2)
3
2

, y = h̃(t, x).

(21)
The two constants are related by:

ρcs − ρaca =
1

2
(ρU2 − ρaU2

a ). (22)

The next problem is to understand the role of linear stability. We linearise
about the following state:

ψ = Uax+ εψ1, ϕ = Usx+ εϕ1, h̃ = h̃0 + εh̃1. (23)

The linear equations of motions then become:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 0 < y 6 h̃0 (24)

∂h1
∂t

+ Us
∂h1
∂x

=
∂ϕ1

∂y
, y = h̃0 (25)

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 h̃0 6 y <∞ (26)

∂h̃1
∂t

+ Ua
∂h̃1
∂x

=
∂ψ1

∂y
, y = h̃0. (27)

The final interfacial condition becomes:

−ρ∂ϕ1

∂t
− ρUs

∂ϕ1

∂x
+ ρa

∂ψ1

∂t
+ ρaUa

∂ψ1

∂x
= −σ∂

2h̃1
∂x2

. (28)
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To obtain a stability condition, we write:

ϕ1 = ϕ̂(y)eikx+st, ψ1 = ψ̂(y)eikx+st, h̃1 = ĥeikx+st, (29)

where k is a wavenumber and (the real part of) s is a growth rate. The
solutions for ϕ̂ and ψ̂ are:

ϕ̂ = A cosh(ky), ψ̂ = Be−ky. (30)

Inserting these equations into the kinematic boundary conditions yields:

A =

(
s+ ikU

k sinh kh̃0

)
ĥ (31)

B = −
(
s+ ikUa

ke−kh̃0

)
ĥ. (32)

On inserting this into the final equation, we obtain a quadratic equation
for s, whose real part is the growth rate:[
ρ

coth kh̃0
k

+
ρa
k

]
s2+i

[
2ρU coth kh̃0 − 2ρaUa

]
s−ρU2k coth kh̃0−ρaU2

ak+σk2 = 0.

(33)
To further simplify the problem, we set the ambient fluid velocity Ua = 0,
and we denote the ratio of ambient and sheet densities by ρ̄ = ρa/ρ. We
then find that[

coth kh̃0
k

− ρ̄

k

]
s2 + 2isU coth kh̃0 − U2k coth kh̃0 + σk2 = 0. (34)

The growth rate is then the real part of

s =
−iUk coth kh̃0 ± k

√
−ρ̄σk − σk coth kh̃0 + ρ̄U2 coth kh̃0

coth kh̃0 − ρ̄
. (35)

For large surface tension σ, there is no real part to s, i.e. the growth rate
is zero, and so the flow is neutrally stable. For large velocity U , there is a
real part to s, i.e. there is sa non-zero growth rate, and the flow becomes
unstable.

B Direct Numerical Simulations: Appendices

B.1 Computational framework

(B.1.1) The volume-of-fluid (VOF) method was introduced by DeBar [5] and has
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proved to be one of the historical advances in the computational study
of interfacial flows. In this section we present relevant concepts of the
technique. We also introduce technical aspects behind the implemen-
tation of the method in Gerris and highlight prominent numerical and
algorithmical features of the package.

(B.1.2) The Gerris Flow Solver is an open-source stand-alone software package
with tremendous resources in terms of both numerical modelling and
computational performance, with an architecture oriented towards sol-
ving fluid flow problems. The source code is based on the C language and
is freely available under the Free Software GPL license. It was created
by Popinet [21], with the support of the National Institute of Water and
Atmospheric research (NIWA) in New Zealand and Institut Jean le Rond
d’Alembert in Paris.

(B.1.3) We now introduce the mathematical formulation as implemented in Ger-
ris. We briefly sketch the approach for our particular problem in the
present section and refer the reader to Popinet et al. [22] for details. The
equations of motion are

ρ̃(ũt + ũ · ∇ũ) = −∇p̃+∇ · (2µ̃D) + σ̃κδsn + Fe,

ρ̃t +∇ · (ρ̃ũ) = 0, (36)

∇ · ũ = 0,

where D is the rate of strain tensor Dij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi). All
interfacial forces are transferred to the momentum equations in what is
commonly called the “one-fluid” formulation - see Tryggvason [28]. The
physical properties describing each fluid (density, viscosity, permittivity
etc.) are included by singular distributions and the same set of equati-
ons (36) accounts for the entire domain. The Dirac distribution δs isolates
the surface tension effects to the interface alone, and external forces (such
as gravity) are included as appropriate via the Fe term.

(B.1.4) In volume-of-fluid methods, relevant properties such as density, viscosity
or permittivity are represented in terms of a volume fraction c(x, t), where
c is a generic colour function that takes the value 0 in one fluid and 1 in
the other. More specifically we write

ρ̃(c) ≡ cρ̃1 + (1− c)ρ̃2, (37)

µ̃(c) ≡ cµ̃1 + (1− c)µ̃2, (38)

Under this treatment, a density equation (the others properties are trea-
ted in a similar manner) of the general form

ρ̃t +∇ · (ρ̃ũ) = 0 (39)
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becomes
ct +∇ · (cũ) = 0, (40)

which is solved for c and the results substituted into (37)-(38). The value
of c is interpolated across the interface by introducing a small transition
layer in its vicinity to smooth the variation of quantities from one region
to the other. The sharp transitions in physical properties at the interface
are relaxed numerically by applying a filter operator (smoothing) within
a single grid cell, thus making grid refinement a crucial factor in obtaining
accurate solutions.

(B.1.5) Gerris is one of the few available open-source packages incorporating
dynamic mesh adaptivity. Once a base mesh is created, the level of
refinement is described using quadtrees in 2D or octrees in 3D. This tree
structure provides both a solid tracking possibility of how refinement
occurs, and also allows for efficient parallel processing. The user is able
to specify a maximum degree of refinement which will represent the depth
of the graph in Fig. 19. The number of degrees of freedom is reduced by
several orders of magnitude using this very beneficial feature.

Figure 19: Gerris quadtree discretisation scheme. Source: [21].

(B.1.6) The quadtree (octree in three dimensions) structure was adopted from
the onset with the aim to provide a suitable numerical environment for
massively parallel computations. The MPI (Message Parsing Interface)
library is employed for parallelisation purposes and solid scalability is
implemented using a load-balancing algorithm. For further information
regarding the technical aspects of the parallelisation in Gerris we refer
the reader to Agbaglah et al. [1].

(B.1.7) The Gerris ([21],[22]) and, more recently, Basilisk Flow Solvers are open-
source freeware packages with tremendous resources in terms of both nu-
merical modelling and computational performance. Their qualities, in
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particular in terms of adaptive mesh refinement (AMR), become evident
in the study of the problem of drop dynamics in high speed flows. Cap-
turing the evolution of the fluid-fluid interfaces demands an appropriate
resolution, accounting for possible topological transitions. Furthermore,
vortical structures inside the droplets have been shown to drive the inter-
facial dynamics [26] and must therefore benefit from a specialised mes-
hing procedure. Perhaps most importantly, we return to the essence of
the drop motion and fragmentation, which entail the creation and sub-
sequent tracking of a large number of secondary droplets, which possibly
coalesce with other bodies of fluid. A highly refined uniform mesh span-
ning a large region of computational domain would make the problem
intractable. Thus the combination between the volume-of-fluid techni-
que and adaptive mesh refinement is perfectly suited for the problem at
hand; in their absence highly accurate calculations at realistic parameter
values would become unrealisable with present day computing architec-
tures. Several notable high impact publications have emerged in recent
years (see [10, 26, 29]), combining experimental examinations with insight
from numerical solutions using Gerris on drop dynamics problems, thus
further reflecting the suitability of the implementation for the proposed
lines of investigation. For an extended review of the methodology, as
well as applications ranging from electrohydrodynamic control in microf-
luidic devices to modelling high speed drop impact on aircraft surfaces,
relevant introductory sections of the doctoral thesis of the contributer of
this section of the report [4] and associated publications therein offer an
accessible starting point into the area.

C Linear Stability of an Axisymmetric Column

of Liquid: Appendices

C.1 A fully two-fluid stability analysis of jet breakup

(C.1.1) Taking the setup described in section 4.2, at time t = 0, small sinusoidal
perturbations displace the interface between the fluids to

r = ηei(kz−ωt), (41)

where |η| � 1, k is the real wavenumber of the disturbance and ω ∈ C is
the complex frequency. If Im(ω) > 0, we get unbounded growth.
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(C.1.2) We seek axisymmetric solutions for the disturbance velocities in the r−
and z-directions, ui(r, z, t) and wi(r, z, t), and pressures, pi(r, z, t), of the
form

ui(r, z, t) = ui(r)e
i(kz−ωt), wi(r, z, t) = wi(r)e

i(kz−ωt), pi(r, z, t) = pi(r)e
i(kz−ωt).

(42)
Upon substituting these into the Navier-Stokes equations and linearising
for |ui|, |wi|, |pi| � 1, we find that

−ρiiωui = −p′i(r) + µi

(
u′′i (r) +

u′i(r)

r
− ui
r2
− k2ui

)
,(43)

−ρiiωwi = −ikpi + µi

(
w′′i (r) +

w′i(r)

r
− k2wi

)
, (44)

1

r

d

dr
(rui) + ikwi = 0. (45)

(C.1.3) The conservation of mass equation (45) implies the existence of a distur-
bance streamfunction, ψi(r), such that

ui(r) =
ikψi(r)

r
, wi =

−ψ′i(r)
r

. (46)

Therefore, after eliminating the pressure terms from (43)–(44), we deduce
that ψi(r) satisfies[

µi

(
d2

dr2
− 1

r

d

dr
− k2

)
+ iρiω

](
d2

dr2
− 1

r

d

dr
− k2

)
ψi = 0. (47)

These operators commute and are independent for nonzero ω, so we find
solutions of the form ψi = ψ1

i + ψ2
i , where(

d2

dr2
− 1

r

d

dr
− k2

)
ψ1
i = 0, (48)(

d2

dr2
− 1

r

d

dr
−
(
k2 − iρiω

µi

))
ψ2
i = 0, (49)

which have solutions

ψ1
i = αrI1(kr) + βrK1(kr), ψ

2
i = γrI1(kir) + δrK1(kir), (50)

where I1(s), K1(s) are first-order modified Bessel functions of the first
and second kind, ki = (k2 − iρiω/µi)

1/2 and α, β, γ, δ are constants to be
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determined. Since we require the solutions to be bounded at r = 0 in
fluid 1 and as r →∞ in fluid 2, we find that the general solution is

ψ1(r) = A1rI(kr) +B1rI(k1r), ψ2(r) = A2rK(kr) +B2rK(k2r). (51)

(C.1.4) In order to determine the eigenvalue ω, we must apply conditions of
continuity of velocity and stress at the interface between the two fluids.
Continuity of velocity requires that

ψ1(a) = ψ2(a), ψ′1(a) = ψ′2(a), (52)

so that, using (51), we find that

I1(ka)A1 + I1(k1a)B1 −K1(ka)A2 −K1(k2a)B2 = 0,(53)

kaI ′1(ka)A1 + k1aI1(k1a)B1 − kaK ′1(ka)A2 − k2aK ′1(k2a)B2 = 0.(54)

After linearising, continuity of tangential stress on r = a gives

µ1

(
ψ′′1(a)− 1

a
ψ′1(a) + k2ψ1(a)

)
= µ2

(
ψ′′2(a)− 1

a
ψ′2(a) + k2ψ2(a)

)
,

(55)
which reduces to

2µ1k
2I1(ka)A1 + µ1(k

2 + k21)I1(k1a)B1−2µ2k
2K1(ka)A2

− µ2(k
2 + k22)K1(k2a)B2 = 0.

(56)

(C.1.5) Since the perturbed interface is at r = a + ηei(kz−ωt), the first two terms
of the curvature are

κ =
−1

a
+

(
1

a2
− k2

)
ηei(kz−ωt). (57)

The first term gives the curvature of the steady cylindrical profile and
is accounted for in the hydrostatic pressure jump. Thus, continuity of
normal stress requires

(σrr)2 − (σrr)1 = −σ
(

1

a2
− k2

)
η on r = a, (58)

where (σrr)i = −pi + 2µiu
′
i(r) is the rr-component of the stress tensor.

After some algebraic manipulation and noting that the linearised form of
the kinematic boundary condition on the interface gives the relation

η =
−k
aω

ψ1(a), (59)

31



Syngenta ESGI130

we derive the final relation between A1, B1, A2, B2 and ω:[
σk

ω

(
k2 − 1

a2

)
I1(ka)− 2µ1ik

2I ′1(ka)− ωρ1I0(ka)

]
A1

+

[
σk

ω

(
k2 − 1

a2

)
I1(k1a)− 2µ1ikk1I

′
1(ka)

]
B1

+
[
−ωρ2K0(ka) + 2µ2ik

2K ′1(ka)
]
A2 + 2µ2ikk2K

′
1(k2a)B2 = 0. (60)

(C.1.6) To find ω, we therefore most apply the Fredholm alternative to the system
(53)–(54), (56), (60), finding that∣∣∣∣∣∣∣∣

I1(ka) I1(k1a) −K1(ka) −K1(k2a)
akI′1(ka) ak1I

′
1(k1a) −akK1(ka) −ak2K1(ka)

2µ1k
2I1(ka) µ1(k

2 + k21)I1(ka) −2µak
2K1(ka) −µa(k2 + k22)K1(k2a)

Q1 Q2 Q3 Q4

∣∣∣∣∣∣∣∣ = 0

(61)
where

Q1 =
σk

ωa2
(a2k2 − 1)I1(ka)− 2µ1ik

2I′1(ka)− ωρ1I0(ka),

Q2 =
σk

ωa2
(a2k2 − 1)I1(k1a)− 2µ1ikk1I

′
1(k1a),

Q3 = −ωρ2K0(ka) + 2µ2ik
2K ′1(ka),

Q4 = 2µ2ikk2K
′
1(k2a).

In general, (61) must be solved numerically for ω(k).

C.1.1 Neglecting the air: Weber’s limit

(C.1.1) In the limit in which the effects of air are small, we can greatly simplify
(61). In this case, the relevant boundary conditions are simply continuity
of stress with the air terms neglected. Thus the matrix is simply two-
dimensional and the resulting dispersion relation for ω(k) is given by

σk

a2
(
k2a2 − 1

)
=

µ1

iρ1ω

[
4µ1ik

3k1
I ′1(k1a)

I1(k1a)

−2µ1ik
2(k2 + k21)

I ′1(ka)

I1(ka)
− ρ1ω(k2 + k21)

I0(ka)

I1(ka)

]
.(62)

Note that for k real, it is clear that ω = is, for s real.
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D Perforations: Appendices

D.1 Stochastic Perforation

(D.1.1) In this section, we look at the stochastic generation of perforations. In
this regime, the sheet is thin enough for perforations to appear and there
are few enough perforations to remain separate from each other. We
assume the outward velocity of the sheet for a position on the sheet
(x, z̃) at time t is given by Gaussian white noise,

ẏ± = σξ(x, z̃),

where y+ indicates the position of the top part of the sheet, y− indicates
the position of the bottom part of the sheet, and a dot ˙ denotes diffe-
rentiation with respect to time. To simplify the analysis, we set y− = 0
and measure y+ from y−, ie the fluctuating thickness of the sheet. We
assume the sheet ruptures whenever y+ − y− = y = 0. Since the sheet
interface velocities are Gaussian, their difference must also be Gaussian.
Furthermore, the net sheet thickness must have a Gaussian distribution.
Assuming that the sheet thickness is a smooth stochastic process in time,
the rate at which y goes below zero with a negative velocity (ie sheet
contraction) is given by Rice’s Formula,

rsc =
[σẏ]y=0

2πσy
exp

[
−〈y〉2

2σ2
y

]
[exp(−ρ2) + ρ

√
π(1 + erf(ρ))],

where subscript y denotes differentiation with respect to y, and ρ =
〈ẏ〉θ/(

√
2[σẏ]θ). These conditional quantities are found by

〈ẏ〉y=0 = 〈ẏ〉 − cov(y, ẏ)〈y〉/σ2
y, [σ2

ẏ]y=0 = σ2
ẏ + cov(y, ẏ)2/σ2

y.

Fortunately, we show that the covariance is zero, simplifying our level-
crossing perforation rate to

rsc =
σẏ

2πσy
exp

[
−〈y〉2

2σ2
y

]
.

(D.1.2) To derive the equation for the sheet dynamics, we consider the force
due to surface tension (in the limit of small fluctuations) along with the
inertial and viscous forces from the liquid. The free energy of the interface
is

F =

∫
d~xγ

√
1 + (∇u)2
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and the energy dissipation is

T Ṡ = µ

∫
dV (∇v)2,

where µ is the liquid’s viscosity. Using scaling arguments and thin film
approximations, we find approximate forms for these quantities. The
dominant dissipation scales like ∇v ∼ ∂tuq/h̃ where uq is the Fourier
transform of the perturbation to the interface and h̃ is half the sheet
thickness. We then take functional derivatives to find forces associated
with surface tension and viscous dissipation. Balancing these with inertial
forces of the liquid, the sheet fluctuation, u, in the spatial Fourier domain
is

ρh∂ttu+
µ

h
∂tu+ |q|2γu = σξ(q, t),

where q is the wave vector. Taking temporal Fourier transforms yields

(−ρhω2 + iω
µ

h
+ |q|2γ)ũ = σξ̃(q, ω).

Hence the second moments of u (and by extension y) are given by

〈u2〉 =
σ2

2π

∫ ∞
−∞

dω

(|q|2γ − ρhω2)2 + ω2µ2/h2
, (63)

〈uu̇〉 =
σ2

2π

∫ ∞
−∞

iωdω

(|q|2γ − ρhω2)2 + ω2µ2/h2
, (64)

〈u̇2〉 =
σ2

2π

∫ ∞
−∞

ω2dω

(|q|2γ − ρhω2)2 + ω2µ2/h2
, (65)

from which we see that all three integrals converge, with 〈uu̇〉 = 0, hence
the covariance is zero.

D.2 Surfactant induced instability (Preliminary)

(D.2.1) A thin sheet with interface fluctuations η, variable surface tension due to
surfactant concentration Γ (for which the surface tension surfactant rela-
tion is σ = σ0 + RTΓm log (1− Γ/Γm), here R is the molar gas constant
and Γm is the maxium surfactant packing density), is governed by the
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following equations:

∂tη − ∂yφg = 0 (66)

∂tη + ∂xφL∂xη − ∂yφL = 0 (67)

ρa∂tφg − ρ
(
∂tφL + (∂xφL)2

)
= σ∂xxη −

RTΓ2
m

Γm − Γ
∂xΓ∂xη (68)

∂tΓ +
1√

1 + (∂xη)2
∂x (Γ∂xφL) = 0. (69)

This leads to an approximate dispersion relation for the perturbations in
the sheet. Instability occurs for sufficiently large fluctuations in surfac-
tant concentration on the surface. It is unclear, however, whether this
instability would be a valid mechanism of breakup for fan nozzle jets,
since the model assumes that all surfactant is at the surface of the sheet
- this may be unrealistic. Even if this assumption is reasonable there is
some complex phase behaviour between the surface and surfactant con-
centration that make the mechanics of any such instability unclear.

E Late Stage Droplet Size Distribution: Appen-

dices

E.1 Neglecting Coalescence

(E.1.1) Various scaling laws characterise when coalescence matters, based on the
capillary and Weber numbers. The capillary number is the ratio between
viscous forces and surface tension:

Ca =
µU0

σ
, (70)

where µ is the liquid’s viscosity, U0 in the characteristic velocity scaling
and σ is surface tension. The Weber number We is the ratio between
inertial forces and surface tension, given by

We =
ρaU

2
0D

σ
, (71)

where ρa is the surrounding air density and D is the typical length scaling
for the droplet diameter. Frostad et al. [9] consider the characteristic time
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it takes for the thin film of air separating two colliding droplets to drain,
allowing these to touch and coalesce, arriving at the scaling τ ∼ Ca−1/2,
where τ is the typical drainage time. Other studies [3, 23, 25] consider
models in which the angle of incidence between two droplets is taken into
account by a so-called impact parameter, and then for any such parameter
value, coalescence occurs within some range of Weber numbers (see, for
example, Figs. 1 and 2 in [23]). Crucially, these ranges of Weber numbers
are bounded by a critical Weber number beyond which no coalescence will
occur.

(E.1.2) Direct numerical simulations suggest that the velocity of the mist of drop-
lets is large. For the range of parameter values of interest here, the Capil-
lary number is sufficiently small to result in typical drainage times much
larger than the time it takes most droplets to reach the crops. Similarly,
the Weber number is sufficiently large so as to suggest that coalescence
will be negligible. Droplets that remain airborne in the wake of the vehi-
cle, however, lie within a slower ambient velocity field, and in this region
of the mist, which we neglect in this study, coalescence may play a more
significant role.

E.2 Steady state

(E.2.3) If a steady state exists, it satisfies

∇ · (fuD) = b(V ). (72)

The solution of (72) with uD as given in (11) is given by

f =
(x− 1/2)b(V )

uD(x)
, (73)

which is undefined at the zeros of u, and thus a steady state cannot
exist for a nontrivial velocity, since droplets overfill some regions of the
distribution.

E.3 Breakup term

(E.3.4) We now consider the form of the breakup term in (10). The number
of droplets of volume V is decreased by breakup, and also increased by
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the breakup of droplets of volume greater than V . The breakup rate is
therefore given, as in [13], by

B(V, x, t) =

∫ 1

V

bg(V̂ , V )f(V, x, t)dV̂ −
∫ V

0

bl(V, V̂ )f(V, x, t)dV̂ , (74)

where bg(V̂ , V ) and bl(V, V̂ ) are the breakup gain and loss kernels re-
spectively.

(E.3.5) We must ensure conservation of volume - the total volume fraction αgain

gained by smaller droplet of volume V̂ due to the breakup of droplets of
volume V must equal the total volume fraction αloss of droplets of volume
V lost to breakup and the formation of droplets of smaller volume V̂ :∫ V

0

V̂ bg(V̂ , V )f(V, x, t)dV̂ = αgain(V ) = αloss(V ) =

∫ V

0

V bl(V, V̂ )f(V, x, t)dV̂ .

(75)
This is satisfied for

bl(V, V̂ ) =
V̂ bg(V̂ , V )

V
, (76)

so the breakup term is

B(V, x, t) =

∫ 1

V

bg(V̂ , V )f(V, x, t)dV̂ −
∫ V

0

V̂ bg(V̂ , V )

V
f(V, x, t)dV̂ . (77)

We assume the a droplet of volume V breaks up to form two daughter
droplets of volumes V1 and V2 with a parabolic probability symmetric
around V/2, giving, as in [13],

bg(V̂ , V ) = 12g(V )
V (V̂ − V )

V̂ 3
, (78)

where g(V ) governs the rate of breakup.

(E.3.6) Where the droplets are moving slowly under gravity, we expect no further
breakup. However, the direct numerical simulations detailed in section
3 suggests that, in Syngenta’s set up, high velocities are maintained. It
is possible that the droplets breakup further due the shear stress of the
droplet surface caused by the relative motion between the droplet and
the air [18]. The rate of breakup is governed by the dimensionless Weber
number for air, and the Ohnesorge number for the droplet liquid [18, 7],
taking the lengthscale to be the characteristic droplet diameter scaling
D. Breakup will occur until a stable diameter Ds, for which the surface
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tension is greater than the external forces, is reached. There is no further
breakup for droplets with diameter Ds. The stable diameter is given in
terms of a critical Weber number Wecrit [18],

Ds = Wecrit
σ

ρaU2
, (79)

where ρa is the air density and Wecrit is given by the following empirical
correlation,

Wecrit = 12(1 + 1.077Oh1.6). (80)

The rate of breakup should be determined empirically. For the purposes
of this report, we follow Gorokhovski and Saveliev [11] and assume g(V )
is proportional to the volume by

g(V ) = b0V
1/3H(2V 1/3 −Ds), (81)

where b0 is the breakup rate constant and H(x) is the Heaviside function.
We include the Heaviside to ensure that there is only breakup of droplets
with a diameter greater than Ds. The value for b0 will depend on the
physical parameters of the system including viscosity surface tension. In
the absence of data, we treat b0 as a variable parameter to see the effect
on the resultant droplet size distribution.

(E.3.7) Summarising, the breakup kernel is given by

bg(V̂ , V ) = 12b0V
1/3H(2V 1/3 −Ds)

V (V̂ − V )

V̂ 3
. (82)

This is used in (74) to govern the breakup in the system. The resultant
equation of motion, taking into account negligible coalescence, is

∂

∂t
f(V, x, t) +∇ · (f(V, x, t)uD) = B(V, x, t), (83)

where

B(V, x, t) = 12b0V
1/3H(2V 1/3 −Ds)f(V, x, t)

[∫ 1

V

V (V̂ − V )

V̂ 3
dV̂ −

∫ V

0

V̂ (V − V̂ )

V 3
dV̂

]
,

(84)

and uD(x) = x(1− x)(x− 0.5). (85)(E.3.8)

We assume periodic boundary conditions at x = 0 and x = 1, that is

f(V, x = 0, t) = f(V, x = 1, t). (86)
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As discussed above, the initial condition at t = 0 should be provided from
the primary breakup of the liquid sheet.

F Notation

(F.0.1) The notation used in this report is given in tables 2 - 5.
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Symbol Meaning

a Radius of cylinder of fluid

bg Breakup gain kernel

bl Breakup loss kernel

b0 Breakup rate constant

c Volume fraction

cs, ca Constants

dD Droplet diameter

dL Ligament diameter

f Droplet size distribution function

fvoid Fraction of sheet that is void

h Sheet thickness

h̃ Half sheet thickness

h0 Initial sheet thickness

h̃0 Half initial sheet thickness

k (and k̄) (Scaled) wavenumber

p Pressure in fluid

pa Pressure in ambient

pi Pressure (fluid i)

r Standard cylindrical coordinates for cylinder of fluid

rv Void radius

s (and s̄) (Scaled) growth rate of perturbations

t Time

ũ Fluid velocity

uD Droplet velocity

ui Velocity in r-direction for fluid i

w Sheet width

wi Velocity in z-direction for fluid i

w0 Initial sheet width

x Distance across sheet

z̃ Distance from aperture

z̃0 Distance from aperture at which perforation starts

z Standard cylindrical coordinates for cylinder of fluid

Table 2: Notation used in this report: lower case letters
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Symbol Meaning

B Breakup rate

C Coalescence rate

D Characteristic droplet diameter

D Rate of strain tensor

Ds Stable diameter

Fe External forces term

K Liquid sheet thickness x distance from source

L Characteristic lengthscale

Nv Number of grid points for V

Nx Number of grid points for x

Ri Inner toroidal radius

Ro Outer radius of annulus

S Source term

U Sheet/jet velocity

U0 Characteristic velocity scale

Ua Ambient velocity

V Droplet volume

Vp Volume of fluid that would fill perforation

Vr Volume of annular ring around void prior to torus formation

vr Void expansion rate

Vt Torus volume

Table 3: Notation used in this report: upper case letters
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Symbol Meaning

γ Surface energy per unit area

η Perturbation of interface

θ Standard cylindrical coordinates for cylinder of fluid

θf Fanning angle

κ Curvature

µ Liquid dynamic viscosity

µ1 Viscosity of fluid in cylinder

µ2 Viscosity of surrounding fluid

ν Liquid kinematic viscosity

ρ Liquid density

ρa Air density

ρ1 Density of fluid in cylinder

ρ2 Density of surrounding fluid

σ Surface tension coefficient

(σrr)i rr-component of the stress tensor

τ Typical drainage time

φ Velocity potential for fluid

ψ Velocity potential for ambient

ψi Disturbance streamfunction for fluid i

ω Frequency

Table 4: Notation used in this report: Greek letters

Symbol Dimensionless number

Ca = µU0

σ
Capillary number

La = σL
ρν2

Laplace number

Oh = µ√
ρσL

Ohnesorge number

Re = ρU0L
µ

Reynolds number

We =
ρaU2

0D

σ
Weber number

Table 5: Notation used in this report: dimensionless numbers
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