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Executive Summary

Problem Background

Globally there is a huge market for herbicides. Syngenta and its competitors spend large
amounts of money in trying to develop new herbicides which are highly effective (kills the
plants that the farmer wants to get rid of), selective (does not harm the crops that the
farmer is trying to protect), safe (not harmful to humans or the environment) and cheap to
produce.

Every year Syngenta chemists develop around one thousand new compounds that could
be used as herbicides. Accurately evaluating the efficacy, selectivity, safety and ease of
production of each one of these compounds would be extremely expensive. Initially syn-
thesizing compounds even in tiny quantities requires a lot of work. Different compounds
will then require different levels of dosage, may target certain species of plants better
than others, may work more effectively in conjugation with different solvents etc. A huge
amount of time and money could be spent optimizing the application of a particular com-
pound, which then turns out to be very poor compared to existing herbicide products on
the market.

In order to attempt to select only the best performing compounds in a cost effective way,
Syngenta use a screening cascade. This process begins by testing all of the candidate com-
pounds in laboratory experiments, referred to as assays, to see if they can (e.g.) target a
particular enzyme, or penetrate a leaf. These lab experiments only require a tiny quan-
tity of each compound to be synthesized. Compounds which perform poorly in these first
experiments are discarded from the trial. We call this the first screen.

Compounds which pass this first round are then passed to a second round in which a small
amount of the compound is applied to several small pots containing a few different species
of plant. Compounds which perform poorly in this second experiment are discarded from
the trial process. We call this the second screen.

In subsequent screens larger quantities of the compounds are used in the experiments,
which makes them a lot more expensive. By using more compounds the candidate herbi-
cides can be tested on a larger range or species, at different dosages, in conjunction with
various different conditions, and with less sampling error.

As the screening process progresses, the screens become steadily more rigorous and
consequently more expensive. At the same time the number of compounds remaining in
the trial goes down. Finally a small number of compounds are taken to the final level, called
the field trial. In this trial the compounds are applied outdoors in the way they would be
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Figure 1 Five stages of the screening cascade.

used if they were eventually developed into a commercial product. See Figure 1.

Problem Statement

Currently Syngenta’s approach to the screening cascade, specifically deciding which com-
pounds will pass each screen, is somewhat unscientific. It relies on a mixture of tried and
trusted formulae and the ad hoc influence of the expert chemists and biologists, who might,
for example, favour a particular compound and have reason for wanting it to pass further
through the trial even though it performed poorly on an early test.

The problem is to develop methodology to optimize the screening cascade in a principled
way, drawing on areas of Mathematics such as Statistics and Optimization.

Summary of our our approaches

During the study group week the team discussed the problem widely and considered a
range of mathematical models for the screening cascade as well as different methods for
choosing which compounds to pass through each screen.
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Figure 2: Snap shot of data recorded during screening process.

One aspect that struck all the mathematicians was the huge complexity of the process.
The ‘goodness’ of a compound is difficult to characterize with a single variable and exper-
iments on different compounds at the same level of screen are often conducted in a way
that makes it difficult to compare their results directly, for example by their opplication at
different concentrations. Figure 2 is snap shot of one of the tables of data collected during
the screen: note in particular the large number of missing values.

In order to have somewhere to start with a preliminary analysis we chose to work with
one of three highly simplified models of the screening process, although, all of which could
be extended to be more realistic in a number of ways. The approaches token in the four
remaining sections are outlined briefly below.

In Sections 2 and 3 we introduce and analyze two models for the screening cascade that
allow us to optimize the rate at which compounds are screened out at each stage. Both
models use a simplified version of the problem in which there is a single ‘goodness’ score.
The approach in section 2 uses Monte Carlo simulation and would be quite easy to adapt
to include more complex modeling. The approach used in section 3 uses more probabilistic

analysis and quickly computes very accurate results, but may be a little less general in its
current form.

In section 4 we discuss the possibility of using prediction markets to incorporate the expert
opinions of the chemists and biologists into the analysis in a mathematical way.

In Section 5 we introduce an even simpler model of the screening cascade, with only two
levels of screen and binary experiment outcomes. This very basic model enables us to
compute an optimal adaptive screening strategy, which makes optimal decisions about what
tests to apply. For example choosing to terminate the whole process early if it will probably
not be profitable.
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Probabilistic model and Monte Carlo analysis

The problem outlined above can be characterized by the following simplified model set-up.
We consider one shot of an annual cycle in which there are j = 1,2,..., N compounds to
evaluate in total: here N = 1,000. We suppose that each compound has a true (unknown)
scalar merit 4, which rolls up a number of distinct attributes, such as lethality to various
weed families and safety (i.e.,, non-lethality) to various crops. Of course, our approach might
be extended in future to consider vector-valued merit and multi-criteria decision making.

The overall goal of the cycle is to try to identify the ‘best’ compounds, i.e., those with the
highest merits, to carry forward to exhaustive field testing, which will measure compounds’
merits rather accurately — in total 20 such compounds per year might be so selected.

The testing process is arranged into a sequence of i = 1,2, 3,4 stages, of increasing accu-
racy and expense, where i = 4 is the field test. The idea is that each stage is a screen which
selects compounds to be passed to the next stage. In the real-world situation, compounds
may skip stages if they appear especially promising, or may be re-introduced following re-
jection if other criteria (such as success of compounds with similar chemistry) indicate that
they should. However, we neglect these difficulties for the time being. Let n; be the number
of compounds tested in stage i. We have

N(: 1000) 2 ny 2 N9 2 ns Z N4 (: 20) (1)
If n; = n;y1 for any ¢, then stage i has not screened out any compounds at all — and thus is

redundant.

In essence, the tests ot each stage estimate the compounds’ merits, but are erroneous
because of either

o the simplified nature of the test (i.e., in the greenhouse, with only a limited number of
weed and crop varieties) does not reflect the true requirements (in the field, with a
wide range of uncontrolled environmental factors); or

e sampling error (i.e., there are not enough plants of each variety to draw robust statis-
tical inference) — this is also convolved with measurement error due to the subjective
human-based assessment used in each test.

The idea is to simplify these errors and suppose that each test returns the true merit plus
a random variable, for example we use

pij = 1 + N(0,07), (2)
where p;; is the estimate of compound j's merit ot stage i and N(0,0?) represents a nor-

mally distributed random variable whose standard deviation ¢; > 0 is a measure of the
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A

cost
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Figure 3: Trade-off between the cost (c) and the standard error (o) of a test. Tests that
are used in practice (black discs), labelled 1,2,3,4 to represent their stage in the screening
process, should lie on a Pareto front amongst the set of all possible tests. Inferior tests
(grey discs) lie behind the Pareto front and should not be used.

accuracy of testing in stage i. Smaller values of o; represent more accurate tests and the
limit o; = 0 represents a perfect test that recovers the true merit. Note we assume that
each stage is an unbiased estimator (so we assume that a calibration has been carried out)
and that there is no correlation between errors from stage to stage. Note

01 > 09 > 03 > 04, (3)
expresses the increasing accuracy of tests from stage to stage.

We let ¢; be the cost of testing a single compound at stage i, and we assume that this
increases from stage to stage so that ¢; < ¢; < ¢3 < ¢4, in contrast to (3). In fact, it is
instructive to understand the (o, ¢) plane, see Fig. 3. In particular, the tests (o4, ¢;) used in
practice should lie on a Pareto front in the set of all possible tests. It is also instructive to
consider a setting in which sampling error is the only kind. In this, the cost of each test is
proportional to its size (the number of plants used), so the central limit theorem will imply
that ¢ is proportional to 1/02.

Depending on the precise objective, there are several different problem formulations, but
here we suppose that there is a fixed budget B > 0 which must be fully spent. We also
suppose that ny (the number of compounds taken to field test) is fixed, absorbing n4c, of the
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budget. The decision variables are thus the proportions 0 < p; < 1 of the remaining budget
B — nyc4 spent on stages i = 1,2,3. Thus

Ciny

bi = m- (4)

aond
p1+p2+p3=1 (9)

The latter equation implies there are only two degrees of freedom to investigate in a design
space which is best viewed in Barycentric coordinates, see Figs. 4 and .

In order to compare the efficacy of different screening systems, we use an objective func-
tion which measures the relative ranking of the compounds that are passed to stage 4. Let
R be a bijective map on {1,2,...,N} that describes compounds’ rankings, based on true
merit, so that pr-1(1) > pr-1(2) > ... > pr-1(w). Letiii, i, ... iy be the compounds that pass
to stage 4 (where M = ny = 20). Then we define

1 M . M+1
hvi Zj:l R(ij) — 2+

N-M-1

f=1- (©)

We thus derive a perfect score of f =1 if the best 20 compounds, based on true merit, are
selected. In controst, f = 1/2 corresponds to a random selection and f = 0 to when the
worst 20 compounds are selected.

Our procedure is then to test each screening design, represented by the vector p =
(p1,p2,ps) satisfying (4,9), by Monte Carlo methods. To do this, we create a collection of
N artificial compounds whose true merits are drawn from a probability distribution and
are hidden from the screening process that follows. Each stage’s tests are then simulated
in turn by adding the appropriate noise, as defined above, to the true merit. The compounds
with the best simuloted merits are then passed to the next stage of screening.

The overall quality of the cascade is then measured according to the rank function f of the
compounds that pass to stage 4. Note that f is a random variable because of the noise
incorporated in each test. Hence to obtain stable expected values, the whole procedure is
ensembled a large number of times and the results averaged. Of course, one might attempt
an analytical approach (see Section 3), but the Monte Carlo method runs extremely quickly
— typically just a few seconds to explore the design space and produce each of Figs. 4 and
S — and can be programmed extremely flexibly to adapt to more sophisticated rules (e.g.,
compounds that skip stages).

There is generally speaking a huge variety in the possible solution structures, depending
how the parameters o, ¢; (i = 1,2, 3) and B are chosen. Furthermore, the standard deviation
o of the true merit distribution is a key parometer, and if it is comparable or less than the
standard error of the tests, then the performance f will be extremely poor (although one
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might argue that the ranking metric is not relevant if compounds’ true merits are very
similar).

Figs. 4 and 5 present exemplar results for high and low budget scenarios respectively. In
each case, the parameters o;, ¢; and o are set at the same ‘stylised’ values (not formally
fitted to experimental data), and we report the average f from 100 simulations for each
feasible data point p. Note large parts of the barycentric triangle are blank, because they
correspond to settings which do not satisfy (1), which requires that the number of com-
pounds tested is reduced from stage to stage.

In the high budget scenario, we set B = 2B,,;,, where By, = ns > c; is the total cost of
carrying 20 compounds through all of the stages. Fig. 4 shows that in this case, it is best to
test all compounds in the first stage (n; = N), and the search for the optimal strategy is thus
a line search that explores the trade off between the cost of the second and third stages.
Of course, the optimal trade off may be read off from the simulation output (indicated by a
black circle on the plot).

In the low budget scenario, we set B = 1.05B,,in, SO that there is almost no spare resource.
In particular, it is only just about feasible at our parameter settings to test all compounds
in the first stage, and this would leave almost no resource for later stages. It follows that
the best thing to do is to randomly select a subset of compounds to test in the first stage
and thus we need to explore three-way trade offs between the costs of the stages 1, 2, and
3. (From the wider system design point of view, this finding has implications for how the
testing budget is balanced with the budget allocated to compound discovery.) As before,
the optimal trade off may be read off from the simulation output (indicated by a black
circle on the plot). However, note, as one might expect, the performance of the cascade,
as indicated by the maximum value of f, has been severely impacted by the constrained
budget, in comparison to Fig. 4.

Finally, note that both sets of results indicate very poor performance along the lines n; = ny
(resp. na = n3). This is because these describe settings in which there is no cut-down from
the first stage to the second stage (resp. second stage to the third stage) and thus the
first stage (resp. the second stage) is redundant and the resource spent on it has been
wasted. This finding suggests exploring set-ups in which the first stage (resp. second stage)
are deleted. This kind of question, relating to the number of and structural relationships
between the stages, remains for future work.
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Figure 4: Monte-Carlo results for a high budget scenario.
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Probabilistic approach (analytical)

Each of the experiments in the screening cascade is designed to test how effective is the
molecule going to be in the final application. The experimental results however always con-
sist of a random error. One can try to simulate the screening cascade using Monte Carlo
methods, by randomly generating each time the score reached by each of the molecules.
These methods however require to repeat this procedure multiple times in order to achieve
arelioble results.

Another opproach is to compute the probability distribution change during each process
using basic mathematical transformations. Its biggest advantage is no need to repeat com-
putations, very high precision achievable even with very low computational power usage
as well as high possibilities of manipulating the screening procedure. This approach is pre-
sented in the section 3.1, while in section 3.2 the results of numerical experiments based on
this model are presented. Section 3.3 shows how can the model be used to verify how could
data aggregation across the experiment improve the overall screening cascade perfor-
mance.

Probabilistic model of the screening cascade

There are three assumptions of the model:

1. Initial frequency distribution of the true merit is known; it will be referred as Pjisia1 ().

2. Probability distribution of experimental results around real value is known and is con-
stant for the tested population; it will be referred to as Pexperiment (%)

3. Results of all experiments are independent from each other, i.e. the random error of
each experiment is not correlated with those of others experiments.

The term frequency distribution is used for either a discrete or continuous distribution,
which sum or integral in the given range is interpreted as the expected number of samples
(molecules) with values included in this range. The main point of modeling the screening
process is to check how the initial frequency distribution change during a single experiment.
The procedure for finding the frequency distribution ofter passing through a screen is
composed of three steps:

Step 1. Find the frequency distribution of the measured values by calculating convolution of
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the distributions Piyitial AN Pexperiment, i-€-:

IP)measured(x) = (]P)initial * ]P)experiment) ((E)

+00 (7)
== / IP)initial(y)IP)cxpcrimcnt (y - l’)dy

— 00

Step 2. Find a threshold value, such that measurements of exactly m somples are placed
below this value. These samples are going to be removed during the screening process.

Peasured (X <= threshold) = m. (8)

Step 3. Find the final distribution of true merit across the population, which has advanced
for the next step of screening cascade. It can be found by multiplying the initial frequency
distribution by the probability that the measured value is higher or equal to the threshold:

Pﬁnal(x) = IP)initial (I)Pexperiment (X >= threshold — :Z?) (9)

The distributions found during an example of the following procedure are presented on the
Figure 3.1

_ threshold

Number of samples

Pinitial (%)

II;Dmeasured (x)

inal (xX)

1 1

Merit (real expected

Figure é: Distributions in case of Peyperiment = N (0,20) aNG Pipitial = 900 - N (50, 10)

To model the whole screening cascade one needs to repeat the presented procedure for
each experiment, in each step choosing the final distribution from the previous step as
an initial population of the next step. As the aim of any optimization procedure one can try
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to maximize the expected volue of true merit among the sample, which reached the field
tests stage. Mathematically it is expressed as:

fj—;: 2Pgna(z)dx

fjof Phinal(x)dx . (10)

E(X) =

The equations presented above cannot be solved analytically and there is often no simple
mathematical expression for the frequency distribution Pg,.;. This model can however be
implemented by splitting a given range of merit values into a sections and by assigning
to each section the probability that a sample has merit within this range. As long as the
probability distribution decreases exponentially for low and high merit values (i.e. it doesn’t
have so called heavy tail) one can limit the domain from (—oo, +o0) to some finite range
where we expect to have merit values. However one needs to remember to keep the
distributions properly normalized.

Numerical experiments based on the model

The described model can be used to design the experimental procedure, i.e. which experi-
ments are going to be used, in which order and how many sample should be dropped during
each step of the screening cascade etc. One can introduce additional constraints, for ex-
ample fixing the total cost of all experiments. Some proposition of numerical experiments
are listed below:

1. Varying the number of trials in each screening process in order to find the best con-
figuration ot a given budget,

2. Adding, removing or manipulating the order of the tests in order to find their impact
on the final results,

3. Finding the optimal number of initial samples, which are tested, in order to check
whether taking all possible molecules for initial tests is optimal.

The example results of the first proposition are presented in this subsection. Firstly, some
assumptions about Pi,itial(z) AN Pexperiment (z) for each of screening cascade stages has
to be made. Here it is assumed that all the distributions can be modeled as normal distri-
bution N(u, o). Moreover it is assumed that exactly 20 of the best samples from the last
glasshouse experiment are taken to the field tests.

The initial distribution of true merit is modeled as Pi,isiai(xz) = 900 - N (50, 10), where 900 is
the initial population size. Note that the choice of expected value does not influence the
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order of samples, which is the only important feature during selection. It is chosen in order
to have any absolute scale for its value. It does not even need to be used in the data
presentation, because we can present merit values in comparison to the mean of the 20
best samples from the initial population (which can be regarded as the upper limit for any
testing algorithm). This mean can be found by calculating the following expression:

1 /'oo
Mmax = =~ ZC]P)initial(x)dx7 (”)
20 threshold

where threshold can be found by solving the following equation:

Pinitial(X > thI‘QShOId) = 20. (]2)

The standard deviation of distributions is however important, because it allows us to com-
pare the precision of each test to the diversity of the initial population. Each experiment is
modeled using the distributions presented in Table 3.2. Zero expected value means that the
experiment is unbiased. The cost is not needed to apply the presented model, but it allows
us to draw conclusions about the best design of experiment under budget constraint.

experiment ‘ distribution ‘ cost per sample | number of removed somples

EPS N(0,20) 1 my
PPS N(0,4) 10 ma
SPS N(O, 2) 6 880 — mip — Ma9

Table 1: Properties for each screening process used in numeric experiment.

From now on, the impact of the number of samples dropped in each stage (m; and m») on
the quality of the final set chosen for a field tests is investigated. The developed model
was applied for m; € 0, 10,20, 30, ...,880 and ms € 0,10, 20, 30, ..., 880 — m; in order to find the
mean value of true merit among 20 samples chosen for the field tests. Figure 3.2 shows
how the frequency distribution changes in each stage of screening cascade for m; = 500
and my = 280. As could be predicted, the mean true merit increases in each stage, however
also the number of samples with the highest merit values slightly decreases.

Figure 3.2 presents the results both for the mean true merit value and the total cost of the
experiments. The volue of true merit is expressed as logg pimax — #(X), so that the lower
values are closer to the optimal solution iy ax.

It can be easily read from the graoph that the best solution is to leave all the samples until
the most precise SPS test (m; = 0 and my = 0), however this procedure is obviously the most
expensive one. The cheapest procedure is to drop almost all the samples in the first test
(my1 = 850), but it is obviously the least precise method. To obtain more useful conclusions
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Number of samples
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Population before EPS
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Figure 7: Frequency distribution of population left ofter each stage of the screening cas-
cade.
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Figure 8: Value of log;, timax — 1(X) (left) and total cost (right) for different procedure set-
tings.

the lines of the fixed income, described by the linear equation 1 % 900 + 10 * (900 — m1) + 6 *

(900 — m; — msy) = const. were added. For each budget the optimal configuration was found
and is represented by the black points.
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What can be noticed is that for high budget it's good not to remove any or almost any
samples in the second test (PPS). Basically, as long as the assumptions are reliable this step
could be removed from the procedure. However the situation changes dramatically when
the budget is below the certain threshold, where a phase transition takes place. For lower
budget (which is the area of our interest) both EPS and PPS are used to reduce the number
of samples to very small quantities (m; + ms € [800,880]). It means that only o few samples
should advance to the lost test (SPS), however according to the model this step should not
be removed from the procedure. It provides an extra validation step, while taking up only
a few samples just slightly increasing the costs.

The redline on Figure 3.2 corresponds to the selection currently used by the Syngenta, so if
the assumptions about distributions are reliable, it is suggested to slightly limit the number
of samples taken to SPS in the same time increasing the number of samples passing the
less reliable EPS. The groph in Figure 3.2 present the outcome of the optimal procedure
for different values of the available budget. Such a groph can be used as an additional
support in making decisions about increasing and decreasing the budget for the screening
cascade.

] [ (global maximum) - (local maximum

‘ 1 1. 0 ‘ ’ 1( : :"HIHI
4UUU ) b OO
LUUU UUU .m' OUUU £ UULU

Figure 9: The dependence between the total cost and the mean true merit of final populo-
tion in case of optimal configuration.

This completes an example of using the presented model. Before applying a similar proce-
dure, it is recommended to gather some data about the variance of initial population and
each of the experiments. However it is difficult to do unless some randomly chosen sub-
set of molecules is tested at each stage of the screening cascade and compared to their
results at the field tests. Another option is to use heuristics to propose some arbitrary
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distributions as it was done while working on the presented example.

Aggregating the experimental data

One of the questions the study group was asked was to consider aggregation of data
from all experiment during selection of samples passing to the next stage of the screening
cascade. For example if a molecule has passed EPS and PPS with a very high score, but
obtained a moderate score in SPS (not included in the top 20 samples) it may still be worth
taking to the field experiment. The solve this problem two questions need to be addressed:

e How should the result for different results be aggregated?

e How would it increase the quality of the samples taken to the field test?

Using only the assumptions presented in section 3.1 both of these questions can be an-
swered. If the results of the experiments are independent from each other (i.e. there is no
correlation among them) the best estimate of the mean is expressed as:

Z (Ti
i 42
L i
E L’
i o2

B(X) = =25 (13
where i is the index of experiments, which were already conduced (e.g. EPS is 1, PPSis 2, SPS is
3), z; is the result of i*h experiment and o; is the standard deviation of Peyperiment distrioution

for ith experiment. The variance of this estimator is:

Var(X) = = (14

which, as long as more than one test was conducted, is always smaller than the variance
of any single experiment ;. This improves the precision of each screening stage. For the
distributions presented in Table 3.2, one can find the effective precision of each stage, which
is presented in the Table 3.3. The more test are already conducted the precision is further
improved.

EPS PPS SPS
Original standard deviation 20 4 2
Aggregated standard deviation 20 392 178

Table 2: Precision comparison for aggregated and not aggregated score in each stage.
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The experiment described in subsection 3.2 were repeated again for improved precision.
Figure 3.3 presents the improvement of true merit mean among 20 samples taken to the
final tests. It's not clear whether the waves seen on the graph are reliable or whether
they are just caused by the numerical imprecision, however some general trends can be
observed. The improvement is the highest when a large set of samples reach the SPS
test, which happens for high budget strategies. In low budget case, when only a very small
number of samples reaches the SPS test the improvement is low.

Difference of mean true merit
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Figure 10: The comparison of screening wit and without aggregated for different budgets.

This is even more clear if the precision vs cost curve is drawn both for the results with
and without aggregation as presented on the Figure 3.3. It is clearly seen that for the
low budget the improvement is small, however it has to be emphasized that the aggre-
gation of data does not require any modifications of the experimental procedure (such as
changing the number of investigated samples). In fact, if the assumptions are reliable the
effect of aggregating data is almost the same as the effect of optimizing the procedure as
presented in the previous section. The only disadvantage of this modification is however
a need to estimate the precision of each test accurately in order to implement the for-
mula for score aggregation (equation 13). Choosing unreliable variances could lead to much
lower improvement or even to deterioration if fist stages would get too high weights.
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Figure 1. The comparison of screening wit and without aggregated for different budgets.

Prediction markets for cascade screening

While working on the problem different mathematical approaches for the modelling were
presented. However there are some problems, which cannot be resolved using standard
mathematical tools. These are:

e heuristics involved in the process, especially in the early stages of the molecules de-
velopment,

o different perspective and objectives of people involved in the process (chemists, biol-
ogists and others),

e the problem of insufficient data, while increasing the scale of the process would be
too costly.

A possible solution to address all these problems is applying crowdsourcing using predic-
tion markets.

Description of prediction markets

We will start with the definition given by Leigh and Wolfers: prediction markets are markets
where participants trade contracts whose payoff depends on unknown future events. The
defining feature of a prediction market is that the price of these contracts can be directly
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interpreted as a market-generated forecast of some unknown quantity [1]. Their mechanism
relies on the efficient markets hypothesis: the price of a financial security or prediction
market contract reflects all available information [1]. Therefore prediction markets are
an example of efficient crowdsourcing - aggregating dispersed, and often contradictory,
knowledge from a group of people to obtain very precise information about the outcome
of a future event.

Modern approach to prediction markets began in 1988, when three economists of the lowa
University created a market to predict the outcome of the presidential election (Bush vs
Dukakis). It was observed that in any given moment in time such market gave much better
forecast than all major polls. The experiment has been carried on for many other elections
and the comparison shows that it beats all polls in about 75% of the times. The advantage
of markets is even bigger when the time to election is long. [2]

After the success of lowa Electronic Markets the interest in prediction markets grew rapidly.
Currently markets are used by many large corporations (Google, Microsoft, IBM, Lockheed
Martin, etc.) as a tool to assess the probability that a project will end as planned, that a sales
goal will be achieved or as a tool to estimate the market potential of innovative products
[3] For instance, General Electric has been running markets for new ideas and products
originated by employees. Eli Lilly, a large pharmaceutical company, ran a prediction mar-
ket to support choice of new drugs for further development, primary decision factor being
market potential. Further, in the BRAIN' project - an internal research at Hewlett-Packard, it
was shown how to run prediction markets with small numbers of participants (up to 10 peo-
ple) and still obtain meaningful results.

Apart from internal corporate applications there are also many publicly available commer-
cial markets (e.g. Hollywood Stock Exchange, Intrade), where operators often profit from
fees or selling complex analyses derived from the market data. Furthermore, even DARPA?
and IARPA® have implemented prediction markets [4], mainly to obtain accurate predictions
important for the American military or intelligence community.

Enhancing information for cascade sceening

Prediction markets are primarily a source of information that can be aggregated efficiently
from their participants. This property allows to use them to reduce the uncertainties in the
process. For instance, the information that could possibly be gathered through a predic-
tion market encompass the progression of samples through the screening cascade, the

1
2

Behaviorally Robust Aggregation of Information in Networks
Defence Advanced Research Projects Agency - an American government agency supporting large scientific
projects that might be useful for military purposes

3 Intelligence Advanced Research Projects Agency - the counterpart of DARPA devoted to intelligence purposes
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possible paths of molecules development and success of new projects can be predicted.

Another very important benefit from the use of prediction markets is the fact that all par-
ties, including chemists, biologists and others would be simultaneously involved in the plan-
ning process. While interacting on one platform everyone could feel that his voice is heard
and that he can have impact on the entire process.

For instance, take one of the biggest uncertainties in the planning process - the selection
of the samples, which are tested using the screening cascade. As we learned, biologists
and chemists often have different perspectives on which properties of the molecules has
highest impact on their success during glasshouse and field tests. This difference may lead
to different preferences for the molecules development. For example there are some addi-
tional factors best known to the biologists observing the effect of pesticides on the plants,
which are not considered by the chemists preparing these molecules in the laboratory. All
this data is of great significance for predicting the success of the samples throughout the
screening process.

All this information can be easily aggregated into forecasts by a properly set prediction
market among people involved in the process. Apart from chemists and biologists work-
ing directly on the experiments, others participants are also welcome, as they increase
diversification of information that in turn can enhance accuracy of a prediction market ([1]
and [3]). The questions on the market, that have to be binary, could ask about the success
of a molecule ar group of molecules in each step of the screening cascade separately.
As an illustrative example we provide a set of questions, which could be put on a prediction
market:

1. Is (given sample) going to reach ond pass the PPS test?
2. Are at leost five sample containing (given compound) going to pass through PPS test?

3. Are there going to be more sample containing (given compound) than the (other compound)
among those, which reach the PPS test?

Similar sets of questions could be posed for every stage of the screening cascade or any
samples and molecules. Obtained predictions may turn out to be more accurate than the
early stages of molecule production and testing process, especially those based on the
heuristics of people working on their production.

Such a prediction market could be incorporated into a larger software tool that would help
in the screening cascade planning process and would allow for fast and efficient infor-
mation exchange between all parties involved. On the other hand data obtained on such
market would allow to build complementary datasets, involving information about the pre-
dicted success of passing expensive tests (for example field tests) even if these molecules
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are not going to reach this stage. It can be used to calibrate other mathematical models
described in this report, for example by estimating the accuracy of early stages of the
screening cascade.
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Optimal Adaptive Screening

In practice the success rates associated with each screen and the information that one
screen gives about the next are unknown. Instead they are best thought of as random
variables and reasoned about using Bayesian statistical methods. We might believe that
a good score in test 1 will result in a good score in test 2 but unless there has been a
rigorous study designed specifically to explore this relationship we will not be certain about
what probabilities to use when choosing our screening cascade. Furthermore, even if these
probabilities are well known for one group of compounds, they may not be applicable to a
new group developed from a different chemical lead.

Instead we propose an adaptive screening strategy, which chooses compounds for testing
at different levels of screen and continually updates its strategy based on the results that it
has seen so far. If we assign a financial cost to each level of screen and a financial reward
to finding compounds that perform well in the final field trials then the whole screening
process can be formulated as an optimization problem. In particular we want to maximize
the expected profit subject to various possible constraints.

To do this we model the whole screening process as a Markov Decision Process (MDP). A
MDP consists of a state space X an action space A and a reward function R. In the case
of the screening process the state space X consists of every possible configuration of
tests performed and their results. For example a state x € X could represent that we
have carried out test 1 on compound 1 and it scored 7, we carried out test 1 and test 2 on
compound 2 and it scored 4 and 6 respectively, and we didn't carry out any other tests. The
action space represents of all of the possible actions that we can take from each state. For
example from the state x we could carry out test 2 on compound 1, or we could carry out
test 3 on all of the compounds etc... The rewards represent the profit associated with each
state. This should be equal to the reward associated with any compounds that we have
found to pass the final test minus the cost of all of the tests that we have carried out.

The MDP model is Bayesian in the sense that given that we are in a state z € X, we have
some information about the underlying probabilities. In particular we have the test scores
for all of the tests that we have carried out so far. For example if we have carried out test
1 a number of times then we will have data about the test 1 performance scores, which will
reduce our uncertainty about the probability distribution of the test 1 performance scores.
This knowledge gained through the process is exploited by the algorithm to find the globally
optimal adaptive screening strotegy.

The only drawback to the MDP formulation is that the size of the state space grows expo-
nentially with the number of compounds and screens. This means that we are not practically
able to use this formulation to optimize the screening strategy for a model that is remotely
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faithful to the real life screening problem that Syngenta work with. However, there are a
variety of extensions and alternative to MDP, such as policy iteration with state-action value
function approximation, which are often used to overcome this problem. In applications of
these other techniques an important first step is always to study an MDP formulation of a
simpler and smaller version of the original problem. Exploring the MDP model of the toy
problem lets us gain an understanding of the different factors at play in determining the
optimal adaoptive screening strategy, which can then be incorporated into a more complex
model. Such a preliminary study is the focus of the remainder of this section.

Binary two level screen

We consider a screening problem consisting of n = 20 candidate compounds and two levels
of testing. Each test has a binary outcome 0 meaning a fail or 1 meaning a pass. Thus each
compound can have one of four possible performance profiles (0,0) meaning that it fails
both tests, (0,1) meaning that it fails test 1 and passes test 2, (1,0) meaning that if passes
test 1but fails test 2 and (1, 1) meaning that it passes both tests.

We assume that there is an underlying probability distribution p = [poo, po1, P10, p11], Such that
poo is the probability that a randomly chosen compound will have performance profile (0, 0)
and so on. However, rather than assuming that we know p exactly we instead suppose that
it is an unknown random variable but with a known prior distribution. In particular we will
assume that p has a Dirichlet distribution with concentration parameters [ago +1, ao1 +1, a0+
1,a11 +1]. The choice of a will bias our prior in different directions. One way to interpret the
concentration parameters is to imagine that we began with a uniform prior, which assumes
that any p is equally likely - including even p with test 1and test 2 negatively corrolated, and
then tested a total of agg + a1 +a19+ai; randomly chosen compounds and found agg of them
to have performance profile (0,0) and so on. Given the choice for a the average probability
of a randomly chosen compound passing test 2 is equal to

apr +14+a11 +1
ago+1+ap+1+ao+1+a;+1’

and the average probability of a randomly chosen compound passing test 2 given that it

passed test 1is equal to
_ aip + 1

ajo+14+an+1
However, because the probabilities are themselves random variables, the screening strat-
egy will need to be able to deal with variations around these averages, which it will not be
aware of until it has carried out some screens and gathered some data.

From the screening process's perspective each compound can be in one of nine possible
states (7, 7) meaning that no tests have been carried out, (0, 7) meaning that we have carried
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out test 1and it failed but we have not carried out test 2, and so on. The full state space of
the screening process can therefore be represented by

X ={(7,7).(0,7),(1,7),(?,0),(0,0), (1,0), (?,1), (0,1), (1, 1)}**,

which assigns each of the 20 compounds to one of the nine possible states. The number
of different states in X has twenty digits! Luckily we can reduce this considerably without
introducing any approximation. Since each compound is a priori ii.d. all that matters is the
number of compounds we have in each of the nine possible states. Thus the state space
can be represented by X = {z e N? : Z?:1 x; = 20}. The state z € X represents having z;
compounds in state (7, 7), 2, compounds in state (0,7) and so on. By representing the state
space in this way we reduce the number of states to a large but manageable 3,108, 105.

For each state there are at most six possible actions. If the state contains at least one (7, 7)
compound then we can apply test 1 or test 2 to it. If the state contains at least one (7,0)
compound then we can opply test 1to it, if the state contains at least one (?7,1) compound
then we can apply test 1to it, if the state contains at least one (0,7) compound then we can
apply test 2 to it and if the state contains at least one (1, 7) compound then we can apply
test 2 to it.

We compute the optimal adaptive screening strategy by solving the Bellman equations using
dynamic programming. We compare the optimal adaptive screening strategy obtained with
the MDP formulation to two simpler non-adaptive methods. In non-adaptive method 1 we
simply skip test 1 and apply test 2 to every compound. In non-adaptive method 2 we first
apply test 1to every compound and then apply test 2 to every compound that passed test 1.

Experimental Results

We will assume that the cost of test 1is £0.2 and the cost of test 2 is £1. For this example we
use the concentration parameters with a = [10, 1, 1, 1] meaning that the average probability
of a randomly chosen compound passing test 2 is A\ = 4/17 and the average probability
of a randomly chosen compound that passes test 1 passing test 2 is 4 = 1/2. We will vary
the reward for finding a compound which passes test 2 between £2 and £6. The results
are displayed in Figure 12. Note that with a low reward both non-adaptive methods expect
to make a loss. The optimal adaptive method will never have a negative expected profit,
although it is still possible for it to make a loss in a single trial if it ‘gets unlucky’. Over
roughly £4.75 non-adoptive method 1 outperforms non-adaoptive method 2. This is because
the reward is so large that it is on average worthwhile screening all of the compounds in
test 2. However the optimal adaptive method always makes a bigger profit.
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Figure 12: Comparison of screening strategies using Dirichlet prior with a = [5,1,1, 2.
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Optimal adaptive screening behavior

As well as being able to compute summary statistics for the performance of the optimal
adaptive screening method we can simulate randomly generated trials and observe the
optimal decision making process in action. In further work we could represent the method's
behavior as a decision tree and compute the probabilities associated with each branch. But
for this report we simply generate a few random trials. For all the trials below we use the
strategy that is optimized for a reward of £4 for each compound that passes test 2. For
each example the exact sequence of states is depicted in Section 7.

Interestingly the optimal adaptive screen always starts by testing the first compound with
test 2. If this compound fails as in Examples 1and 2 then the method begins applying test 1
to the compounds.

In Example 1 the method finds only one compound that passes test 1 out of five and this
compound fails test 2. Given the evidence that few compounds pass test 2 and that test Tis
a poor predictor of test 2, the method chooses to stop early.

In Example 2 the method also initially finds only one out of five compounds pass test 1but
this compound also passes test 2. Given the evidence that test 1is a good predictor of
test 2, the method then applies test 1to every compound and then applies test 2 to every
compound that passed test 1.

In Examples 3, 4 and S the first compound chosen passes test 2. In these examples the
method then proceeds to apply test 2 to more compounds. In each of these examples the
second compound fails test 2 and the method then opplies test 1to the compound that
passed test 2.

In Example 3 the first compound fails test 1. The method then applies test 2 to more pre-
viously untested compounds and only one out of six compounds pass. Given the evidence
that few compounds pass test 2 and that test 1is a poor predictor of test 2, the method
chooses to stop early.

In Example 4 the first compound fails test 1. The method then applies test 2 to more previ-
ously untested compounds and the finds that three out of six compounds pass. Given the
evidence that many compounds pass test 2 but that test 1is a poor predictor of test 2, the
method continues to test all of the remaining compounds with test 2.

In Example S the first compound passes test 1. Given the evidence that test 1is a good
predictor of test 2, the method then applies test 1to every compound and then applies test
2 to every compound that passed test 1.
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Discussion

We have presented a MDP model for a simple two stage screen with binary outcomes. The
MDP formulation enables us to compute the optimal adoptive screening strategy, which is
designed to maximizes the expected profit. We hope that this preliminary study can form
the basis of further work, developing methodology to compute optimal adaptive screening
strategies for more complex screening models and ultimately to be applied to Syngenta’s
herbicide screening program. Some of the additional factors that would need to be include
in such a model include.

e Much larger number of compounds: typically there are around 1000 compounds in each
screen.

e Additional information about each compound: physical or chemical characteristics
could enable more accurate predicted performance.

e More screening stages: the Syngenta screening process consists of around six stages.

e Continuous, possibly vector valued, screening performance scores: the scores of each
screen are kill rates on various types of plants.

e Time and logistical constraints: it is not practical to carry out one test ot a time. In-
stead the tests should be done in large batches, but not to exceed the capacity of the
laboratory/greenhouse available.

In principal all of these considerations could be put into a MDP model, but the resulting
compilation would be beyond the powers of current computers. However, developing such
a MDP model and then exploring alternative approximate approaches to optimizing it would
be arealistic approach to developing an optimal adaptive screening method for Syngenta’s
herbicide screening progrom.

List of Acronyms
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7 MDP Example behavior
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7.0.2 Example 2
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7.0.3 Example 3
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7.0.4 Example 4
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7.0.5 Example 5
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