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Abstract

MISG explored the relationships between eight important measures of soil quality
and several predictor variables thought to influence soil quality. One measure, the
penetration resistance of soil, was examined in a regression model for its relationship
with soil order and soil moisture. The other quality measures were: bulk density
in the top 15 cm of soil; carbon percentage in the top 15 cm; the biologically
available carbon; phosphorus availability; and the size distribution of soil aggregates
as represented by the mean weight, the percentage of very small soil aggregates
(<0.85 mm) and the percentage of very large soil aggregates (>9.5mm). These
last seven were examined for their inter-relationships and as response variables in a
sequence of regression models. The models explored the effect of crops grown, and
tillage methods used, at each farm site on soil quality. The impacts of crops and
tillage were represented by indices, and at least one index was significant for six
out of the seven quality measures studied. It was however found that background
factors, including soil order and texture, land use and region, need to be taken
into account when assessing the effect of the indices. As well as describing these
regression models, this paper outlines some investigations made into: how the crop
and tillage indices might be improved; how data on climatic and other variables
might explain some regional differences; how interactions among background factors
and indices might be assessed – in the absence of balanced data – and incorporated
in the model; and how results might be presented.
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1. Introduction

Much of New Zealand’s income derives directly from agriculture, and
for decades the New Zealand public, and agricultural industries, have
invested in scientific research to enhance the productivity and improve
the quality of agricultural production systems. One aspect of this is
ongoing research into the health or quality of the soil and its importance
to sustaining high levels of agricultural production.

Soil quality can be defined as the fitness of soil for a specific land use.
The farm management practices employed under a given land use, in-
cluding the type of crops grown, the tillage methods used, the fertiliser
and irrigation applied, and the grazing practices, can affect the quality of
the soil and the resulting economic outputs and environmental impacts.
The focus of the MISG problem was to examine factors that affect eight
important measures of soil quality relating to both short-term produc-
tivity and long-term sustainability of the soil. Of particular interest are
the two management aspects most immediately under the control of the
farmers: the tillage practices and the vegetation grown.

The MISG study formed one chapter in an ongoing study programme
being undertaken by researchers from Crop & Food Research and the
Sustainable Soil Management Promotion Group [1]. The eventual aim of
the study programme is to produce a land management index that can
be used by farmers to assess the likely effect of their farming practices
on the soil and future productivity. An example would be the possible
benefits or otherwise of replacing conventional ploughing with minimum-
tillage techniques.

Soil scientists measure soil quality in several different ways, but for
MISG purposes the study was mainly restricted to seven variables, which
were grouped under four headings. Soil Compaction was measured by
BD15, the bulk density of the top 15 cm of soil. Organic Matter was
represented by two variables C%15 (the carbon percentage in the top 15
cm) and HWC (hot water carbon - the biologically available carbon).
Phosphorus Availability in the soil was measured by Olsen’s P. The size
of Soil Aggregates was represented by three variables: the stability of
soil aggregates AgStabMWD, where MWD stands for mean weight
distribution; and the extremes of the aggregate side distribution (ASD)
as measured by the percentage of very small soil aggregates ASD% <
0.85 mm, reflecting a risk to erosion; and the percentage of very large soil
aggregates ASD% > 9.5mm, reflecting soil compaction. More details of
these variables are given in [1], Appendix III, p42-44. An eighth variable,
penetration resistance, is also a measure of soil fitness for agricultural
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use. However it was the subject of study on its own, in section 4, and
not treated alongside the other seven.

Predictors of the soil measures included: the soil order (i.e. soil classi-
fication) Allophanic, Brown, Gley, Granular, Melanic, Organic, Pallic or
Recent soils; soil texture silt, sand or clay; the geographic region (Auck-
land / Waikato, Hawke’s Bay, Canterbury, or Southland) and the land
use or type of farming practiced (intensive cropping, mixed cropping,
vegetable production, dairy farming, conventional sheep/beef farming,
or high-tech intensive beef production). All these categorical variables
were considered as background factors: of some interest in their own
right but of less importance to the study than the effect of land man-
agement practices.

Land management was summarised by two indices: a tillage index
calculated from 10 years of management data (tillage index high for
many years of intensive cultivation, zero for undisturbed grass) and a
Crop index reflecting the crop types grown. The actual formulas one
should use to calculate the tillage and crop indices was a matter for
discussion, and was considered during MISG (see section 3). However
for most analysis considered here the index values were taken as given,
based on formulas suggested by expert opinion and past experimental
work [1].

Data for the MISG project was provided by the Sustainable Soil Man-
agement Promotion Group. Four members of the group were in atten-
dance at MISG. The MISG contributed to the analysis of the soil data
in several ways.

Exploratory data analysis was used to investigate inter-relationships
between the soil measures and to conclude some variables should be
analyzed on a transformed scale. Regression models were fitted to each
soil measure in terms of the categorical variables land use (farm type),
soil order, soil texture and geographic region. Results of these analyses
are discussed in section 2.

Different aspects of the regression models were then examined in de-
tail, to investigate potential improvements. First, the Crop and Tillage
indices are based on empirical weightings of both the type of activity
and how long ago the activity occurred. Some exploration was made
of a method for better determining the weights. Second, significant re-
gional differences were found in the soil measures even after adjusting for
landuse, soil order and soil texture. The LENZ database (Land Environ-
ment of New Zealand) was interrogated to identify possible explanations
for the regional differences. Third, there appear to be interactions be-
tween the effects of region, land use, soil order and soil texture on the
soil measures, for example the effect of land use on the soil measures may
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Figure 1. Histograms of soil measurements and transformed variables.
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not be the same for all soil textures. These interactions were examined,
using a somewhat unusual approach since not all cross-classifications of
the categorical variables are available. Fourthly, suggestions were given
as to how one could better express the data in a regression model for
computation in Excel with new farmers’ data, and how to present the
results in a way easy to communicate to farmers. These four potential
improvements to the analysis are discussed in section 3.

As mentioned above, an additional question concerned penetration re-
sistance, a measure of soil compaction and therefore the difficulty roots
have in entering the soil. The MISG group were asked to consider meth-
ods of correcting the penetration resistance data for differences in soil
moisture. A simple model was proposed and some results are shown in
section 4.

2. Regression Results

Histograms of the seven soil quality measures are shown in Figure
1, along with transformed versions. Although some of the transformed
versions are roughly normal distributed, this was not the purpose of
transformation. Indeed normality would be somewhat of a coincidence,
since the sites examined in the study are not a random sample, and vary
greatly in characteristics. Rather, the purpose of transformation was
to reduce the effects of outliers on the regression modeling. The cho-
sen transformations were to use log(C%15), log(HWC), log(OlsenP),
sqrt(ASD% < 0.85) and sqrt(ASD% > 9.5). Alternatively one could
use log(1+ ‘ASD% < 0.85’) and log(1+ ‘ASD% > 9.5’), the ‘1+’ being
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added to avoid problems at 0. However the log transformation was a
problem for ‘ASD% > 9.5’ as it gave rise to extreme outliers on the
left. A square root transformation is not uncommon for percentage
data and avoids problems at zero [2]. It was decided that BD15 and
AgStabMWD would not be transformed as outliers were less of a prob-
lem.

The data consisted of observations from 530 sites. Figures for the
various categorical variables are given in Table 1, along with an indicator
(IfIndex) for which sites had crop index / tillage index information.
The latter was available for two-thirds of the sites. Note in particular
that there were very few Melanic and Organic soils, while Pallic and
Allophanic soils were common. There were also few Techno Systems
landuses, which were all in the Hawkes Bay. These limited numbers
can affect significance in the analyses, especially for Melanic soils. Also
no Techno Systems sites had crop / tillage index information so this
category is left out of analyses using these indices.

Figure 2 shows scatterplots with lowess smoothers of the seven soil
response measures, and their relationship to the Crop and sqrt(Tillage)
indices. ‘Lowess’ stands for stands for LOcally-WEighted Scatterplot
Smoother, and provides a convenient visualization of underlying linear-
ity or curvature in the bivariate relationship. The corresponding Corre-
lation and p-values are given in Table 2. Note that Tillage, and more
strongly sqrt(Tillage), is significantly negatively related to Crop Index.
AgStabMWD, log(HWC) and log(C%15) strongly increased with in-
creasing Crop Index and with decreasing sqrt(Tillage) (again the correla-
tion was stronger than using Tillage Index). The prevalence of very small
aggregates, represented by sqrt(ASD% < 0.85), and the log(OlsenP) de-
crease significantly but weakly with higher Crop Index and lower Tillage.
There is no overall relationship between the Crop and Tillage indices and
BD15 and sqrt(ASD% > 9.5).

The results of the regression analyses are summarised in Table 3. The
actual implications for each response variable are discussed one at a time
in what follows, using more detailed regression output.

BD15 (Bulk Density at 15 cm) The histogram for BD15 (Fig-
ure 1) showed the distribution is notably bimodal with the main peak
around 1.2 and the lesser peak (around 0.75). The latter peak corre-
sponds mainly to the Allophanic soils of Auckland/Waikato. The model
summaries in Table 3(a) show BD15 varied significantly with soil order,
texture and region, and with landuse (but not when attention was re-
stricted to crops only). The goodness of prediction (as measured by the
coefficient of determination, R2) was higher when the data was restricted
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to crop sites (Intensive Cropping, Vegetable Production or Mixed Crop-
ping). If the rise in R2 had been small then there would be some question
as to whether it was simply a random change due to the much smaller
sample size for crop-only sites. However in the case of BD15 the rise in
R2 is about 6%, which does suggest that the model for BD15 is indeed
fitting better for crop sites. For pastoral landuse sites the R2 is around
64.5%.

There did not appear to be any relationship with Crop Index, but a
weak relationship with Tillage Index. The effect of Tillage was slightly
stronger when expressed on a square root scale, in most models but
especially for the modelling of HWC. The table therefore shows the
square root of the Tillage Index for all models. A possible interpretation
of such a transformation is that there is a law of diminishing returns in
the effect of tillage index on the soils. Be that as it may, the main benefit
of using sqrt(Tillage) is to reduce the influence of certain very high
tillage sites on the regression. Using a shifted logarithmic transformation
log(C + Tillage Index) might achieve the same purpose but then some
arbitrary C > 0 would have to be chosen for those sites with no tillage,
in order to avoid turning those points into high-influence points instead.

In the regression equations for BD15 (Figure 3) the control level (in-
tercept) represents Canterbury Pallic Silt soils with Sheep/beef grazing.
This same control level is used in all regressions, and each significant re-
gression coefficient implies a significant difference to the corresponding
control category. Thus Allophanic and Organic soils had significantly
lower mean BD15 than the control soil order (Pallic) while the other
soil orders did not differ significantly from Pallic in BD15. Clay soils
had significantly higher mean BD15 than the control texture (Silt) but
Sandy soils did not differ significantly from Silt for BD15. Soils used
for vegetable production had significantly lower BD15 than sites where
Sheep/beef landuse occurred, but no other landuse gave a mean BD15
significantly different to that of Sheef/beef farming. Sites from the other
three regions all had significantly lower mean BD15 than sites from
Canterbury. When Crop and Tillage indices were taken into account,
Vegetable production became non-significant. This may be because the
tillage index “stole its thunder” (high tillage also being related to lower
BD15) or because the loss of 170 data points impacted disproportion-
ately on this category of landuse. Note that Crop and Tillage Indices
were not recorded for sites with Techno System landuse, so that cate-
gory drops out of any analysis involving the indices. When attention was
restricted to Crop-only sites the type of landuse (i.e. type of cropping)
became unimportant.
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Figure 3. Regression analysis of BD15
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Figure 4. Marginal plot of log(C%15) vs BD15

C%15 (Carbon percentage at 15 cm) The histogram in Figure 1
showed the C%15 data are very right-skewed, but a log transformation
reduced the skewness and mitigated most outliers. Again we note a
slight bimodality in the log(C%15) distribution, and the marginal plot
in Figure 4 shows the peaks are associated with the peaks in the BD15
distribution. The grid reference lines are at BD15 = 0.75 and 1.2, and
log(C%15) = 1.0 and 2.0.

As for BD15, the log(C%15) is very significantly related to soil order,
texture, landuse and region. The regression details (Figure 5) show
Organic, Allophanic, and to a lesser extent Gley and Granular soils
had significantly higher log(C%15) levels than Pallic soils, while Brown,
Melanic and Recent soils did not differ significantly from Pallic. Clay
soils had significantly lower log(C%15), and Sandy soils significantly
higher log(C%15) than Silt. Cropping (whether intensive, vegetable or
to a lesser extent mixed cropping) gave rise to significantly lower levels
of log(C%15) than Sheep/beef farming while the other animal-based
landuses gave similar readings to Sheep/beef. The other regions all
had significantly higher log(C%15) than Canterbury. When the Crop
index (and non-significant Tillage index) were taken into account the
main change was that the distinctions between land uses become non-
significant. Figure 6 suggests this is because Sheep/Beef and Dairy sites
tended to have higher levels of Crop Index than crop/vegetable sites, and
log(C%15) generally increases with Crop Index. Another change with
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Figure 5. Regression analysis for log(C%15)
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Figure 6. Scatterplot of log(C%15) vs Crop Index

including the indexes is that Recent soils now show significantly higher
levels of log(C%15) than Pallic soils. This is possibly just an adjustment
effect: recent soils were generally quite low in Crop index, and so were
predicted to be low in log(C%15) so a significant upward adjustment was
needed to return these soils to their correct mean. Restricting attention
to Crop-only data did not change the R2s much, so there may be little
to gain by using a separate model for these data.

HWC (Hot Water Carbon) The histograms in Figure 1 showed the
HWC data are very right-skewed, but taking logarithms transformed
the data to something like a normal distribution with a few extra out-
liers. The log(HWC) is very significantly related to soil order, tex-
ture, land use and region. In the regression details (Figure 7) without
the indices, Granular and Melanic soils had significantly lower levels of
log(HWC) than Pallic soils, while Organic soils had much higher lev-
els. Allophanic, Brown, Gley and Recent soils did not differ significantly
from Pallic soils. Clay-textured soils had significantly lower log(HWC)
than Silt, and Sandy soils marginally more. Dairy landuse was associ-
ated with significantly higher log(HWC) than Sheep/beef production
but there was no difference between the latter and Techno Systems lan-
duse. All types of cropping gave rise to significantly lower log(HWC)
levels. Auckland/Waikato and Hawkes Bay sites were not significantly
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Figure 7. Regression analysis for log(HWC)
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Figure 8. Scatterplot of log(HWC) vs TillageIndex, sqrt(Tillage), log(1+Tillage)

different to Canterbury sites but Southland sites had significantly higher
log(HWC).

When the Crop index and sqrt(Tillage) index were taken into account
these were both highly significant: log(HWC) rose with increasing Crop
index and fell with increasing sqrt(Tillage) index. The main changes to
the model were that Granular soils ceased to be significantly different to
Pallic, and the cropping landuses ceased to be significantly different to
Sheep/Beef.

Similar relationships are found if one uses the untransformed Tillage
index or log(1+ Tillage index), but both these representations of the
Tillage effect are subject to outliers at one end or other of the Tillage
range, as shown in Figure 8. Using sqrt(Tillage) reduces the influence of
outliers and tends to give slightly more significant models with slightly
bigger R2.

Restricting attention to Crop-only data gave a reduction in R2. It is
not clear why.

Olsen P The histograms in Figure 1 showed the OlsenP data must
also be transformed by taking logarithms, which produces something
very like a normal distribution. The log(OlsenP) is very significantly
related to soil order, texture, landuse and region, but the model fit (R2)
is rather poorer than for the previous soil quality measures. Model fit



104

Figure 9. Regression analysis for log(OlsenP)
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Figure 10. Scatterplot of BD15 vs AgStabMWD by land use

(R2) was better when the model was restricted to Crop sites. Curiously
the fit was worse when restricted to sites which had crop and tillage
indices, suggesting an element of sampling bias. To explore this possible
bias further, consider the crop-only sites. The median OlsenP was 36.02
for the 93 crop-only sites without a Crop/Tillage index, whereas the
median OlsenP was 20.83 for the 199 sites with the index, which is a
significant difference (Mann-Whitney test, p < 0.001). It is left to the
soil scientists to suggest an explanation for this sampling bias.

In the regression without indices (Figure 9), Organic soils had signifi-
cantly higher log(OlsenP) and Allophanic soils significantly lower levels,
and the other soils are much the same as Pallic soils. With more data
it is possible Melanic soils would exhibit significantly lower log(OlsenP).
Clay texture soils had more log(OlsenP) than Silt-textured soil, while
sandy-textured soils had significantly less. Dairy, Intensive cropping and
Vegetable landuses were associated with higher log(OlsenP) levels than
Sheep/beef landuse. Auckland/Waikato and Southland sites had signifi-
cantly higher log(OlsenP) than Canterbury, while Hawkes Bay sites were
similar to Canterbury sites.

The log(OlsenP) fell significantly as the Crop Index rose, and there was
an apparent (non-significant) trend for it to rise with sqrt(Tillage). With
these indices in the model, the Gley soils appeared significantly lower,
while Clay, and Intensive Cropping landuse became non-significant.
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Figure 11. Regression details for AgStabMWD
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AgStabMWD The histogram of AgStabMWD (Figure 1) shows the
distribution is left-skewed and apparently bimodal though this may sim-
ply be a sampling artifact. Figure 10 indicates that there is no clear
association between BD15 and AgStabMWD, but most pastoral lan-
duses are associated with very high AgStabMWD and most cropping
landuses with low AgStabMWD. Soils used for Vegetable Production
is likely to have both low BD15 and low AgStabMWD.

The model summaries in Table 3(e) show that AgStabMWD varied
significantly with Soil order, texture and region, and land use. Also,
AgStabMWD rises significantly with Crop Index and falls significantly
with sqrt(Tillage). In the regression equations (Figure 11) the Organic
soils had significantly higher AgStabMWD than Pallic soils. Recent
soils had significantly lower AgStabMWD than Pallic soils: although
some Recent and Pallic soils had high AgStabMWD, out of the 22 sites
with lowest AgStabMWD, 20 were Recent and two Pallic. Clay tex-
tured soils tended to have lower AgStabMWD than silt, and sandy soils
higher AgStabMWD. All forms of cropping were associated with lower
AgStabMWD than pastoral sites, and Hawkes Bay sites had signifi-
cantly lower AgStabMWD than Canterbury sites, and Southland sites
higher AgStabMWD. When Crop and Tillage indices were taken into
account, Recent and Clay soils ceased to be significant, as did Mixed
Cropping landuse and Southland location. However, Auckland/Waikato
sites showed up as significantly lower in AgStabMWD than Canterbury
sites. Again it is not clear whether these changes are due to the indices
or simply due to the loss of 170 data points from the analysis.

sqrt(ASD%<0.85) The sqrt(ASD% < 0.85) is very significantly re-
lated to SoilOrder, Texture, Landuse and Region but these background
variables are relatively poor predictors of the response (R2 = 35.8%).

The sqrt(ASD% < 0.85) is significantly negatively related to Crop In-
dex and positively related to sqrt(Tillage), meaning that high tillage is
associated with more very small aggregates and hence more propensity
to erosion. However the R2 only reaches 41.8%. The model does not fit
any better when attention is focused on crop-only sites. From the re-
gression details (Figure 12) Allophanic, Organic and (possibly) Melanic
soils have higher mean sqrt(ASD% < 0.85) than Pallic or other soils
do; as do sandy textured soils, and all sites used for cropping. So these
soils are more likely to blow away or be washed away. Dairy sites have
significantly lower mean sqrt(ASD% < 0.85). Soils in Hawkes Bay and
Southland had significantly lower mean sqrt(ASD% < 0.85) than Can-
terbury but this was not true of Auckland/Waikato sites. After allowing
for Crop Index and Tillage, the above differences became nonsignificant
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apart from the regional ones and the fact that Organic soils have con-
siderably higher sqrt(ASD% < 0.85) than other soils.

sqrt(ASD%>9.5) The ASD%> 9.5 was the worst-described variable
among the soil quality measures. The sqrt(ASD% > 9.5) was signif-
icantly related to soil order, land use and region but not to texture,
and these background categories only described 20.4% of the variation
in sqrt(ASD% > 9.5). It did not appear to be related to either the crop
index or tillage index among all sites, though there was a significant
negative relationship of tillage to sqrt(ASD% > 9.5) in the case of crop-
only sites. In the regression without indices (Figure 13), Allophanic,
Brown and Organic soils are less likely to have ASD% > 9.5 than Pallic
or other soils, while Dairy sites, Hawkes Bay sites and especially South-
land sites have higher mean sqrt(ASD% > 9.5). After allowing for the
Crop and Tillage indices, several variables changed their significance and
the R2 rises from 20.4% to 27.6%, which is a little odd since the Crop
and Tillage indices were not themselves significant. Specifically, Dairy,
(and additionally) Mixed Cropping and Intensive Cropping had signif-
icantly higher sqrt(ASD% > 9.5) than Sheep/beef sites; while Brown,
Organic and (additionally) Recent soils (but not Allophanic) had lower
sqrt(ASD% > 9.5). Perhaps some of these changes are due to the loss of
153 sites from the sample. Again, there is some suggestion that sampling
bias (in terms of selecting sites with or without crop/tillage indices) may
be related to the response. This time there is little difference in crop-
ping sites, but for the 164 pastoral sites, the median ASD% > 9.5 was
41.5 for the 60 sites without a crop/tillage index, as compared to 27.8
for the 104 sites with a crop/tillage index, which is almost significant
(Mann-Whitney p = 0.053). The effects represented in the model are
therefore somewhat uncertain and need to be confirmed.

Conclusion In summary the regression analysis shows that the soil
quality measures (with the exception of ASD% > 9.5) are significantly
related to the crop and/or tillage indices. Furthermore the relationships
are in the anticipated direction, with soil quality increasing with higher
crop index and lower tillage. It is further shown that the soil quality mea-
sures are significantly related to soil order, texture, region and landuse,
in addition to the indices. The discussion has revealed which particular
levels of the categorical variables cause them to be significant. The anal-
ysis has suggested appropriate transformations to use to represent the
inter-relationships among the variables. The analysis has also uncovered
some limitations in the data, in that not all sites have crop and tillage
data and this may potentially bias the regression results. It is hoped
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Figure 12. Regression analysis for sqrt(ASD% < 0.85)
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Figure 13. Regression analysis for sqrt(ASD% > 9.5)
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that this incompleteness in the index data may in time be remedied, to
ensure the validity of inferences drawn.

In conclusion, the results to this point hold promise towards develop-
ment of a useful land management index, but much work remains to be
done. The next section suggests some directions for improvement of the
model.

3. Possible modifications to the model

3.1. Tweaking the indices

In the above, the crop and tillage indices were taken as a given. How-
ever the calculations that went into these indices used empirical weight-
ings to measure the combined effect of crop or tillage events over the last
ten years. There is some experimental data behind these weights, consid-
ering separately the impact of particular events and then the damping of
those impacts over time. An alternative approach, suggested at MISG,
is to use Structural Equation Modelling [4] to determine the weights.
A conceptual example of the model is given in Figure 14. The boxes
T ill1, T ill2, . . . , T ill10 refer to tillage effects in each of the last 10 years.
These effects will be correlated, as represented by the double-headed
arrows on the left. These effects combine together in a latent “Tillage
Impact” variable. The effect is assumed to be causal but with error
(u1), with causality represented by single-headed arrows. The unob-
served“Tillage Impact” then causally affects the soil quality measures
(SQ1, SQ2, SQ3). Again there is some error involved (e1, e2, e3). Lin-
ear regression is used to model the causality. Conceptually it is feasible
to make the structural equation model much bigger, to separate out the
effect of individual tillage techniques at each year, and to include crop
effects and background variables, all in the same model. The limitations
are the size of the dataset relative to the model, and the accuracy of the
data.

The SEM approach was tried at MISG, using the computer program
AMOS. Two simple models (as in Figure 14) were able to be estimated,
but the fit was inadequate. Probably more background variables need
to be allowed in the model, provided this can be done in a parsimonious
way. In principle the approach is promising.

3.2. Use of LENZ data

Significant regional differences were found in the soil measures even af-
ter adjusting for land use, soil order, soil texture, and farm management
indices. The strength of regional differences after these adjustments was
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Figure 14. Structural equation model

surprising. The LENZ database (Land Environment of New Zealand)
was interrogated to identify possible explanations for the regional dif-
ferences. LENZ categorises sites according to a variety of measures,
and data are available to describe most agricultural locations. Some
measures are depicted in Figure 15, showing considerable regional vari-
ation. Climatic variations (annual rainfall, mean temperature and solar
radiation) offered a partial explanation, significantly related to C%15
and HWC, but having less influence on BD15 , AgStab (Mean weight),
ASD < 0.85 and ASD > 9.5. It may be that other components of LENZ
may help explain soil order differences. It was concluded that LENZ data
are likely to provide a useful component of a Land Management Index.

3.3. Exploration of interactions

There appear to be interactions between the effects of region, land
use, soil order and soil texture on the soil measures, for example the
effect of land use on the soil measures may not be the same for all soil
textures. Unfortunately the categorical data was unbalanced: each cat-
egorical variable had at least one category that was not present at all
levels of some other categorical variable. For example each region had
at least one missing soil order, land use or texture. This made the ex-
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Figure 15. LENZ variables vs region

ploration of interactions difficult, as formally one could not fit a general
model with interactions except using REML. A graphical method was
therefore proposed and used to identify those interactions that seemed
to be the most important. Specifically, the residuals from the main ef-
fects model were plotted against each background factor, as in Figure 16.
Confidence intervals deviating considerably from the zero line indicate
likely interactions. Interaction variables could then be created specif-
ically to deal with the aberrant category, and the alleged interaction
tested in a regression model. The intention would be to only include
interactions when absolutely necessary, as for prediction purposes one
needs to avoid overfitting to the sample data. Also some alleged inter-
actions may just be the result of data errors, and the technique aided
considerably in identifying these unusual cases. Of course it may be that
some of these interactions will go away when more variables are included
in the model e.g. LENZ data.

3.4. Suggestion for presentation

Suggestions were given as to how one could best express the data in
a regression model for computation in Excel with new farmers data,
and further how to present the results in a way easy to communicate
to farmers. The latter is illustrated by the mock-up in Figure 17. In
this mock-up, one would conclude that, all other things being equal, if
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Figure 16. Interval plot of ResAgStabMWDfromfixed vs Textgrp

a farmer can increase his/her crop score the stability will increase (with
average 95% confidence intervals shown for each combination), and if
he/she can reduce the tillage score, the stability should increase.

4. Analysis of penetrometer data

Roots cannot penetrate soils that are too hard (>2.5 MPa). The
root system is inhibited and production from crops is therefore reduced.
Penetrometers attempt to measure the resistance of soil to penetration
and thus provide a further useful soil quality measure [1], in addition to
the seven measures discussed in section 2.

A heuristic measure of penetration resistance (PR) is called the thumb
test. If the thumb pressed into the soil penetrates no further than one
thumbnail, this corresponds to a PR of about 1 MPa. Pentration to the
first knuckle corresponds to a PR of 0.5 MPa. Penetration to the second
knuckle corresponds to about 0.25 MPa.

Modern Penetrometers (as illustrated in Figure 18) measure the force
(MPa/cm2) required for penetration to a prescribed depth (15 cm).
There are practical issues which affect the accuracy of the instruments,
including the actual depth, the speed of insertion of the probe, and so
on. However this study focused on the specific issue of water content.
It is believed that penetrability is strongly dependent on the water con-
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Figure 17. Proposed method of data presentation

tent of the soil, with PR changing by a factor of 2-4. The questions
considered were:

How to model the relationship between PR and water content?

Is the relationship the same for all soil types?

How then could one adjust field measurements of PR for water
content?

Figure 19 illustrates the nature of the relationship that we are trying
to model. As moisture content increases, the PR decreases.

Two models were proposed and examined at MISG, and one model
subsequently. Let x denote the water content. The models are

(a) Exponential model Prfield = ae−bx

(b) Inverse model Prfield = 1
a+bx

(c) Power model Prfield = axb

Model (a) was proposed on theoretical (dimensionality) grounds. It
was anticipated that for a particular soil type s

Prfield = a(
ρ

ρx
)ne−bx ⇒ log(Prfield) = A+ Cs − bx
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Figure 18. A modern penetrometer [3]

where ρ is the soil density and a, b, n are soil-dependent constants. Note
that after taking logarithms the dependence on x is ‘separated out’. It
was of great interest to know whether b is soil-independent. If so, this
would be a boon to soil researchers, as it would lead to a single water
adjustment factor that could be used for soil types, regions, orders, and
so on.

The data provided for the study were comprised of 529 pairs of read-
ings for both ‘PR15UnAdj’ (unadjusted penetration resistance to 15
mm) and ‘SM15%w w’ (soil moisture to 15 mm, percentage weight for
weight). The soil order for each pair was also recorded, hence giving
the scatterplot in Figure 19. Figure 20 shows comparative boxplots for
variables by soil order. The Allophanic and Organic soils had highest
median moisture content.

During MISG the exponential and inverse models were explored. The
best-fitting model discovered at that time represented log(PR15UnAdj)
as linear in SM15%w w with intercept varying according to soil order:
model (a). However the model fitted poorly, with an R2 of only 20%.
It was left till after MISG to consider whether the nature of the rela-
tionship between PR and soil moisture depended soil order i.e. is there
an interaction? Investigation showed there was indeed a significant in-
teraction (p = 0.014). Penetration resistance falls faster than average
(steeper slopes in SM15%w w) for Melanic, Brown, and Pallic soils, and
slower for Recent, Gley, Allophanic, Organic and lastly Granular soils.

Another question raised at MISG was whether some of the poor fit
was due to mismeasurement at low PR levels? The scatterplots of
log(PR15UnAdj) and 1/PR15UnAdj (Figures 21 and 22 ) seem to sug-
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Figure 19. Scatterplot of PR15UnAdj vs SM15%w w

Figure 20. Boxplot of PR15UnAdj, SM15%w w vs SoilOrder
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Figure 21. Scatterplot of logPR15UnAdj vs SM15%w w

gest this may be so. Discussions with soil scientists at MISG indicated
measurement may be problematic at low PR. At the very least it is
clear that any modelling is likely to be heavily influenced by very low
PR values, especially for Allophanic and Granular soils.

Two modifications to the MISG model were subsequently considered:
Firstly the data with log(PR) < −1 were excluded from modelling.
Secondly, a smoother of log(PR) versus Soil Moisture suggests curvature
(Figure 23). Therefore the alternative model

log(PR) = αs + β log(Soil moisture)

was considered. This simplifies to the power model. This had the twin
benefits of reducing the curvature and at the same time led to a model
with no significant interaction (p-value = 0.138), i.e. no necessity for
separate βs slopes for each soil order.

Results of linear regression with this log-log model are shown in Fig-
ure 24. The regression model is still a poor fit (R2 = 27.2%) but
at least permits a simple predictive equation without interaction (p-
value for no interaction = 0.128). The model is an improvement on
the log-linear one with the same points removed (R2 = 21.7%) . The
results can therefore be summarized as PR = Asx

−0.82 where As =
exp(3.2961+coef+s2/2), the s2/2 term being a bias correction and x be-
ing the moisture content, x = SM15%w w. Hence PR = 46.5x−0.82 for
Allophanic soils, PR = 30.05x−0.82 for Brown soils, PR = 35.83x−0.82
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Figure 22. Scatterplot of 1/PR15UnAdj vs SM15%w w

Figure 23. Scatterplot of log(PR) vs logSM
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Figure 24. Regression analysis for log(PR)

Figure 25. Scatterplot of predicted PR vs SM15%w w
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for Gley, PR = 50.43x−0.82 for Granular, PR = 50.25x−0.82 for Melanic,
PR = 26.22x−0.82 for Recent, and PR = 30.51x−0.82 for Pallic soils.

Of course these formulae make no adjustment for Texture, Region,
Landuse or Cropping and Tillage, which can lift the explained variation
in log(PR) further. However this seems an adequate starting point for
future modelling. The fitted curves are displayed in Figure 25.

5. Conclusion

The MISG tackled a very extensive problem, with eight important
measures of soil quality as response variables, and several significant
predictors including indices representing the impact of crops grown and
tillage methods used at each farm site. It was found that background
factors, including soil order and texture, land use and region, need to be
taken into account when assessing the effect of the indices. Some sugges-
tions were made as to how the crop and tillage index construction might
be improved, how data on climatic and other variables might explain
some regional differences, how interactions between factors and indices
might be assessed and incorporated in the model, and how results might
be presented. The relationship between soil moisture and penetration
resistance was clarified. The extensive nature of the problem meant that
development of a full land management index was never going to be pos-
sible in such a short time as MISG. The contribution of MISG was to
bring several creative and expert minds together to explore many dif-
ferent aspects of the problem. As a result, basic quantitative knowledge
was added by the finding of significant relationships between variables,
by the identification of possible model limitations, and by the explo-
ration of ways to resolve them, towards development of a fully-fledged
model.
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