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Abstract

The management of the Dutch national airline company KLM intends to bring
a sufficient amount of water on board of all flights to fulfill customer’s demand.
On the other hand, the surplus of water after a flight should be kept to a minimum
to reduce fuel costs. The service to passengers is measured with a service level.
The objective of this research is to develop models, which can be used to minimize
the amount of water on board of flights such that a predefined service level is met.
The difficulty that has to be overcome is the fact that most of the available data
of water consumption on flights are rounded off to the nearest eighth of the water
tank. For wide-body aircrafts this rounding may correspond to about two hundred
litres of water. Part of the problem was also to define a good service level. The
use of a service level as a model parameter would give KLM a better control of
the water surplus.

The available data have been analyzed to examine which aspects we had to
take into consideration. Next, a general framework has been developed in which
the service level has been defined as a Quality of Service for each flight: The
probability that a sufficient amount of water is available on a given flight leg.
Three approaches will be proposed to find a probability distribution function for
the total water consumption on a flight. The first approach tries to fit a distribution
for the water consumption based on the available data, without any assumptions
on the underlying shape of the distribution. The second approach assumes nor-
mality for the total water consumption on a flight and the third approach uses a
binomial distribution. All methods are validated and numerically illustrated. We
recommend KLM to use the second approach, where the first approach can be
used to determine an upper bound on the water level.
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1 Introduction

During flights people use drinking water for different purposes (e.g. consumption and
going to the toilet). This water comes from a single water tank. During the preparation
of each intercontinental flight, the remaining water of the previous flight is drained
from the water tank and then filled up again to a predetermined level with a regulator.
This regulator can only fill up the tank to multiples of 1/8th of the particular water
tank. The determination of the water level is explained at the end of this section. We
start with a detailed description of the water filling process.

Before the flight takes off, the purser reads the water level from a display in the
cabin. On most wide-body aircrafts this display only has eight marks, which makes
it difficult to determine the exact water volume in the tank. Consequently, the purser
rounds off the water level to the nearest mark. The water level before take off is not
by definition equal to the the amount of water pumped in the aircraft, since some
water could be left behind after the draining process. We explicitly assume that the
water tank is filled with high precision, such that the rounding error before take off
is negligible. The same person reads the water volume in the tank again after the
landing. These data records (including the aircraft type, the number of passengers, the
origin and destination, the time of departure and the flight duration) are available for
all flights. The only data that differ are the one from the MD-11 aircraft type. For this
type, the water level is read by the purser in percentages (multiples of one hundreds).
However, the regulator which is used to fill up the water tank is less precise: It fills the
tank to multiples of 1/5th of the water tank.

Since the data have been gathered by operational personnel, it is very likely that
some of the data are wrong. Therefore, a cleaning procedure is used to remove bad
data records. First, data records with a negative water consumption are removed, as
well as records with an average water consumption of more than one litre per pas-
senger per hour. Also data records with zero water usage on long distance flights are
removed.

The question becomes how the situation can be modelled such that the rounding
errors are taken under consideration. This model should incorporate a suitable defi-
nition of service level as a control parameter. Based upon the model the amount of
drinking water should be minimized, because any surplus of water will result in extra
fuel costs.

In the current situation KLLM defines the service level as the percentage of flights
on the same flight leg! that has enough drinking water on board. So a service level
of 95% for a certain flight leg means that only 5% of the flights on that flight leg will
have a water shortage. A weakness of this definition is that this does not mean that a
passenger will only be confronted with a water shortage in 5% of the flights. If water
shortage is a structural problem on crowded flights, a passenger is more likely to be
confronted with a shortage on such flights. Therefore, we recommed that the service
level should be defined from a passenger’s point of view. This leads to the concept of
Quality of Service, as will be discussed in more detail in Section 3.

In the current approach used by KLM, the optimization of the amount of drinking
water is done by calculating a regression line through the measurements of a particular
flight leg. This line shows the relationship between the number of passengers and the

I'A flight leg is a unique origin-destination and aircraft type combination.
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Figure 1: The water level based on the current approach used by KLM, including
the regression line and the shifted regression line (dotted lines).

average water consumption (see Figure 1). The regression line is then shifted upward
until a certain percentage of the measurements are below this line. Finally, all the
values of the shifted line are rounded upward to the nearest multiple of one eighth
of the water tank. This is performed for each flight leg. This model is based on
three important assumptions. The first is that the water usage depends linearly on
the number of passengers. The second is that the variance in the water usage does
not depend on the number of passengers. The third is that linear regression can still
be applied with rounded data. The second assumption is validated in Section 5.2.
The third assumption would need further investigation, because it is not clear which
of the measurements are rounded upward, and which are rounded downward. Take
for instance two measurements corresponding to two similar flights A and B with
150 and 220 passengers respectively. Suppose the recorded water consumption for
both flights is 5/8th of a tank. Assuming that the water consumption depends on the
number of passengers on board, the water consumption of flight B is more likely to
have been rounded downward than of flight A. This suggests that the probability of a
value having been rounded upward or downward will most likely depend on the ratio
between the number of passengers and the recorded water consumption.

This paper is organized as follows. Section 2 focuses on the data analysis of the
historical data of KLM. We have evaluated possibilities to cluster different flights and
studied other aspects that should be taken under consideration. A general framework
has been developed for the problem in Section 3. In this section the definition of the
service level is also presented. In each of the next three sections, different approaches
are discussed to solve the problem. Each method has been validated and illustrated
on common examples. Conclusions and ideas for further research are presented in
Section 7.
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2 Data Analysis

In the current approach used by KLM, the historical data from flights with the same
origin and destination and aircraft type are used to estimate the water usage for a flight.
There are several reasons to investigate whether a larger set of flights can be used. If
these flights have the same behaviour in water consumption, then using more data will
give a better estimate. Furthermore, for predictions, understanding of similaraties of
flights is crucial. In case of a new destination, it will be necessary to use data from
flights to other destinations because there is no data available for the new destination.

Considering the whole data set (over 40.000 “’valid” records), there is significant
correlation between total water usage and the number of passengers (0.49), the flight
duration (0.65), and the aircraft type (0.47). The first two correlations were expected.
The last correlation follows from the other two correlations; First, the influence from
the aircraft types can be explained by the various tank sizes and their rounding er-
rors, and second, the same type of aircraft is used for flights with the same duration
and number of passengers. Because of the high correlation with flight duration, it is
interesting to investigate whether flights with the same duration can be clustered.

To compare two flights with almost the same duration but with different destina-
tions, the correlation between the destination and the average water usage per pas-
senger has been calculated. A significant correlation indicates that the destination
determines the average water usage, and consequently, that it is not possible to cluster
the flights.

Moreover, flights with different durations were compared. The correlation be-

tween those destinations and the average water usage per person per hour was con-
sidered. To avoid the effect of different aircraft types in our analysis, the calculations
have been performed considering different flights to different destinations with the
same aircraft type (MD-11). The results are summarized in Table 1.
It can be concluded that there is a correlation between most destinations and the water
usage per passenger per hour. Therefore, these destinations cannot be clustered. How-
ever, there are particular cases for which the correlation is negligible. Not surprisingly,
this very often happens on flights with destinations in the same region. As an exam-
ple, clustering flights from Amsterdam (AMS) to Aruba (AUA) and from Amsterdam
(AMS) to Bonaire (BON) looks reasonable (see also Figure 2). Day and night flights
can also be clustered, since no correlation appears from the data. The study should be
extended to other destinations and aircraft types as well. Aspects of data analysis that
concern the validation of the different approaches are discussed in the corresponding
sections.

AMS - BON DEL DXB JFK LOS MIA MSP NBO SFO YUL YVR YYZ
AUA 0.024 0.181 0.097 0.058 -0.114 0.071 0.011 0.143 0.125 0.050 0.121 0.003
BON 0.108 0.054 0.017 -0.144 0.026 -0.014 0.083 0.068 0.019 0.049 -0.021
DEL -0.024 -0.094 -0.227 -0.131 -0.180 -0.019 -0.086 -0.102 -0.067 -0.191
DXB -0.045 -0.142 -0.058 -0.094 0.009 -0.028 -0.049 -0.020 -0.100
JFK -0.107 -0.005 -0.066 0.069 0.035 -0.006 0.052 -0.064
LOS 0.171 0.103 0.195 0.214 0.144 0.157 0.115
MIA -0.063 0.095 0.058 -0.004 0.061 -0.073
MSp 0.139 0.116 0.039 0.150 -0.009
NBO -0.054 -0.076 -0.040 -0.150
SFO -0.046 0.010 -0.130
YUL 0.045 -0.049
YVR -0.139

Table 1: Correlation between MD-11 flights from Amsterdam.
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Figure 2: The water usage per passenger per hour on the flights from Amsterdam
(AMS) to Aruba (AUA) and Bonaire (BON) looks similar.

3 General Framework

Consider a flight with n passengers to a certain destination. The total water consump-
tion S, on this flight equals

S, = ZYk, )
k=1

where Y}, is the water consumption of the k-th passenger (in litres). Based on the data,
there is only something known about the rounded values of S,, for each level of n and
for different flights 2.

For a given flight leg (for which the number of passengers n is known), the service
level is defined as the probability that a sufficient amount of water is available. The
service level should at least be equal to some predefined value «, which is established
by the management of KLM. So, we should have

P (sn < éT) > a, ®)

where j/8 is the percentage of tank capacity filled before take off (j € {0,1,...,8})
and 7' is the tank capacity (in litres). Since the service level for all flights should satisfy
the constraint formulated in Equation (2) independently of the number of passengers
on the flight, it is called a Quality of Serivce (QoS).

We are interested in finding the smallest water level for which the service con-
straint is satisfied (i.e. the smallest value of j in Equation (2)). Therefore, we need to
find a probability distribution function for the total water consumption S,, on a flight.

2We know the rounded water level of the tank before take off and landing, the difference is the rounded
water consumption Sy, .
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In the following sections, three different approaches are proposed to find such a dis-
tribution. All methods use the available data to estimate this distribution. Therefore,
they have to take the rounding effect into account.

4 Curve Fitting Approach

The probability that j/8th of the water tank is used on a flight with n passengers,
is derived from the data by looking at the frequencies how often this occurs. These
probabilities are denoted by p;:

o o
ijIF’(<‘;—16>T<Sn<<;+16>T>, i=0,1,...,8 3)

This can be seen as a probability mass function (pmf) of the water consumption during
a flight. Based on these nine probabilities, a probability density function (pdf) of the
total water usage on a flight can be estimated by fitting a curve through the pmf and
then normalizing this curve such that the mass below the continuous function adds up
to one.

The procedure described above has to be performed for the water consumption of a
known number of passengers n. There is, however, a limited amount of measurements
available on a particular flight leg for this fixed number of passengers n. In order to
find enough data records to base the pmf on, the measurements for the surrounding
number of passengers are used as well. We assume that at least 100 measurements are
required to find a representative pmf.

The next step is to find an interpolation formula between these points. Therefore,
an analytic expression for f(x) (where z is the total water consumption on a flight in
litres) has to be formulated, where

f(§T>=pj7 j=01,....8 )

such that the value of f(x) can be calculated at any arbitrary point.

Interpolation schemes must model the function by some plausible functional form.
By far most common among the functional forms used are polynomials. One of them
is Lagrange’s classical formula. Since we have nine known values, this results in a
high order polynomial. A characteristic of high ordered polynomials is that they tend
to have a wild oscillation behaviour between the values (Press et al. [4]). This is not
desirable, since we assume a smooth form for the density function for the total water
usage.

Another possibility is cubic spline interpolation. Splines tend to be more stable
than polynomials. The goal of cubic spline is to get an interpolation formula that is
smooth in the first derivative, and continuous in the second derivative. Roughly, the
idea is to take the first three data points and fit a second degree polynomial. The same
has to be done for the 2"¢, 3! and 4! data point etc. Finally, these polynomials
have to be concatenated together such that a continuous function appears. The exact
formulation is

f(z) =Ap; + Bpj1 + Cf"(xj) + Df"(xj41), x; <z <ajp 3)
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where x; = %T and A, B, C and D are defined as

A=Zit 7Y B=1-A4
Tj+1 — Tj
1, 4 9 1
ng(A —A)((EjJrl—(Ej) D=-

6(33 — B) (41— x;)? (6)

The only problem now is that we supposed the f”(x;)’s to be known, when, actually,
they are not. The key idea of a cubic spline is to require a continuous interpolation
scheme. This is realized by getting equations for the second derivatives f”(z;), given
by

Tj— Tj-1 Tj41 — Tj—1 Tj41 — X5
%f”(xj—l) + == 3 = f"(x;) + %f”(%‘ﬂ)
Dj+1 —Pj  Pj —Pj-1
— 4 J ) J (7)
T4l —Tj T = Tj-1
for j = 1,2,...,7. This equation gives seven linear equations and nine unknowns,

therefore we set f”(zg) = f”(xg) = 0. For more details see Press et al. [4]. Note
that C' = 0 and D = 0 results in a piecewise linear interpolation scheme.

This continuous function f(x) has to be normalized such that the function be-
comes a probability density function g(z).

_ (@)
I () Ty

where the value of the integral can be found with the use of numerical integration.
The service level is given by

9(x) ze[0,T] (8)

. %T
P (sn < ‘éT) :/ g(z)dz, j€{0,1,2,...,8} )
0

The next step is to find the minimum water level for which this service level is at least
«, as shown in Equation (2). In practice, the data can give rise to the fact of taking
less drinking water on board when there are more passengers. This is not logical.
Therefore, we adjust the water level, such that it becomes monotonically increasing
with the number of passengers on a flight. A second modification is required for flights
with small number of passengers, since there are no data available in those situations.
When the assumption is made that a person consumes at most one litre of water per
hour, we get the following upper bound on the water level

water level for n passengers < nD, (10)

where D is the scheduled duration of the flight. The outcome of Equation (10) has to
be rounded upward to a multiple of an eighth of the water tank.

4.1 Validation

The MD-11 data are used for validating the approach, because the tank volume is read
in percentages and, therefore, more precise. Since the number of data records for the
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Figure 3: The histogram of the true water consumption and the estimated density
function for the total water consumption on a flight leg with 285 passengers.

flights from Amsterdam (AMS) with destinations Bonaire (BON) and Aruba (AUA) is
numerous, this cluster of flights is examined. As explained in Section 2, these flights
are equivalent and therefore can be grouped together.

In the curve fitting approach two assumption are made. The first assumption is
that the density of the water consumption does not vary too much for the same order
of number of passengers. So, if 100 flights are grouped together this gives a good
impression of the true density. Secondly, the probability mass function of Equation
(3) can be translated into a probability density function with the use of an interpolation
scheme. In particular, the density of the water consumption needs to be sufficiently
regular.

The first assumption depends upon the data. When there is enough data avail-
able, this assumption can be justified. Otherwise, the tails of the distribution are too
thick. This is explained in more detail in Section 4.3. The second assumption can be
checked with the use of the MD-11 dataset. Figure 3 shows the frequencies of wa-
ter consumption for the flights to the Antilles with 285 passengers. It also shows the
estimated density function of the water consumption, when the data are rounded to
multiples of eighths and subsequently cubic spline is applied. The estimated density
function coincides with the form of the true density function, which is represented by
the histogram. Based on this result, we might conclude that cubic spline interpolation
schemes give a representative estimation for the probability distribution functions of
the total water consumption on a flight leg.

4.2 Numerical example

The curve fitting approach is illustrated for the flight from Amsterdam (AMS) to
Bangkok (BKK) using a Boeing 74E aircraft. For this particular flight leg, the dataset
contains 548 records. The number of passengers ranges from 91 untill 294, with an
average of 243 passengers. The management of KLM decided to use a service level
requirement of 95%. The results for the curve fitting approach, including the data
points, are given in Figure 4. The outcome may seem strange, because the required
water level for 175 passengers is equal to the water level when 250 passengers are on
a flight. Figure 5 shows the estimated density functions of the total water consump-
tion for a flight with 175 and 250 passengers. Based on these two densities we can
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Figure 4: The water level based on the curve fitting approach for the AMS-BKK
flight with the 74E aircraft and a 95% service level constraint.
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Figure 5: The estimated density function for the total water consumption when 175
passengers (straight line) and 250 passengers (dotted line) are on board.

hardly make any difference in the tail behaviour. Hence, the outcome of the method
is the same. Figure 5 shows nicely a shift in the average water consumption when the
number of passengers increases.

4.3 Performance

The curve fitting approach makes no assumptions about the distribution for the total
water consumption on a flight, other than that it has a smooth form without any wild
oscillation behaviour. When the water level for a flight with n passengers has to be
determined, this method looks at all data records on flights with n passengers. If there
are not enough data available on those flights, we use a subset of the data records
surrounding n passengers. Consequently, the distribution for the total water usage
on a flight gets thicker tails and the determined water level is too high. Hence, it
becomes very relevant to find possibilities to aggregate data from different flight legs.
Especially if the service level should be high, since the tail behaviour of the water
consumption is becoming more relevant in those situations. Another reason why we
can conclude that the curve fitting approach results in an upper bound on the water
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level, is the fact that errors in the data strongly influence the outcome. Figure 3 and
Figure 5 show that the water usage distribution has a skewness to the right (even a
strange increase). This could be because of errors in the data, which result in a higher
required water level.

In conclusion, the curve fitting approach should give the best results since there
is no assumption made about the distribution for the total water usage. However, this
method can only be applied when enough data records are available. Otherwise the
outcome is an upper bound on the required water level. For a lot of flight legs there is
not much data available. Therefore, we need to develop another more suitable method.

S Normality Approach

The previous approach uses only a subset of the data to estimate a distribution for
the total water consumption of n passengers. However, when the assumption is made
that the water consumption of each passenger for a particular flight is an independent
and identically distributed (i.i.d.) random variable and since the number of passen-
gers is typically large, the central limit theorem can be applied (Ross [6]). When we
generalize this theorem by adding a constant to the average and variance of the water
consumption, we get

Sn & N (o + np, 02 + no?), (11)

where 1 is the average water usage of a person on a flight, 14 is a constant representing
the water usage that is always required, o2 is the variance of this water usage and
o3 is a constant added to the variance. All four parameters are expressed in litres.
Nonetheless, the assumption of independence and identical distribution for the water
usage per person is not really needed. The central limit theorem behaviour for sums of
random variables holds more generally than under the assumption of i.i.d. summands
(Feller [2]). The other assumptions will be verified in Section 5.2.

The values for the four parameters p, i, o2 and o have to be estimated. This
estimation is done using the maximum likelihood method. In contrast to the previous
approach, this approach uses all data to perform the estimation. When the estimates
for the parameters are determined, we have an estimation for the density function of
the total water usage (.5,,) and we can calculate the service level for any tank volume
by Equation (2).

Vardeman and Lee [7] give a systematic study of statistical analysis with rounded
data. They also suggest a maximum likelihood approach if the distance between the
largest and the smallest rounded value is not larger than the rounding unit. The nor-
mality approach is different in the sense that in this problem the water usage depends
on the number of passengers.

5.1 Maximum likelihood estimation

The likelihood of the data is the probability of observing the data for certain parameter
values (Oosterhoff and Van der Vaart [5]) and is expressed by Equation (12).

N

L(uoaﬂ703ag2;mlax27 ce. 7IN) = Hpni(‘ri | /LOHU,,O'S,O'Q), (12)
=1
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Figure 6: The contour plot of the log-likelihood function for the flight AMS-BKK.

where N is the total number of flights in the data set, n; is the number of passen-
gers in the ¢-th flight, x; is the amount of water used during flight ¢ (in litres)? and
P, (23| 110, 11, 02, 02) is the probability of observing a water usage of x; on a flight
with n passengers and with y, i, 03 and o given:

1 1
pule | posa,0fi0?) = P(o— o7 < Sy <ot T)

o+15T 1 —w-po—nw?

e i dy, (13)
-1 \/2m(08 + no?) v

since the distribution of S, is given by Equation (11).

The objective is to find the values of the four estimators, which maximize this
likelihood funtion. The log-likelihood function of equation (12) has quite a regular
behaviour. Although we do not give a general proof of concavity, we illustrate con-
cavity empirically by applying the function to the water consumption data. Note that
a function f : RV — R is concave if the contour set C' = {(z,v) € RNt : ¢y <
f(z),z € RN} is convex (Mas-Colell et al. [3]). Figure 6 shows that the contours
of the likelihood function for the data of the AMS-BKK flight are convex. Hence,
the log-likelihood function is concave. Applying a numerical optimization method to
the log-likelihood function of Equation (12) will result in a unique maximum. Since
the log-likelihood function is also differentiable in this case, the maximizers can be

3based on the data z; € {0, éT, LT}
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Figure 7: The frequencies of the water usage in percentages of the water tank for re-
spectively 236-249 passengers and 287-289 passengers on the AMS-AUA and AMS-
BON flights.

found by solving the first order conditions for the four parameters. This procedure
gives a system of four quite complicated nonlinear equations. Therefore, this indirect
method is computationally more costly than numerically optimizing the log-likelihood
function.

5.2 Validation

This approach relies on the assumption that the water usage per fixed number of pas-
sengers n for a particular flight leg (or equivalent flight legs, as described in Section
2) has a normal distribution with parameters /i + nu and o2 +no?. To validate these
assumptions, the same setting is used as in the validation section of the curve fitting
approach (the flights AMS-BON and AMS-AUA for the MD-11 aircraft).

In order to say something about the distribution for a fixed number of passengers,
the data have been divided into small ranges of passenger numbers. Each range con-
tains 100 measurements. Figure 7 shows the water usage in percentages of the water
tank (from 0 — 5%, 5 — 10%, etc.) plotted against the frequency. At first impression,
a normal distribution does not seem farfetched. In most of the ranges, there are some
strange values with a high water consumption. This seems to contradict a normal
distribution, but these could also be the result of errors in the data (as mentioned in
Section 4.3). To quantify normality, some statistical tests, like the Shapiro-Wilk and
the Kolmogorov-Smirnov test, are performed.

The Shapiro-Wilk test (De Gunst and Van der Vaart [1]) is commonly used for
testing normality of a given set of data points, where

Hy: the data come from a normal distribution (null hypothesis)

Hj: the data do not come from a normal distribution (alternative hypothesis)

The Kolmogorov-Smirnov test (De Gunst and Van der Vaart [1]) enables to compare
the distributions of two datasets v and w, in which

Hy: v and w have the same distribution

H,: v and w do not have the same distribution
For v the actual flight data are used, while for w random numbers are drawn from
a normal distribution with a mean equal to the sample average of v and a variance
equal to the sample variance of v. Besides normality, a logistic distribution could be
used as well, to find out whether the actual distribution of the water consumption has
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passenger all data without outliers
range Shapiro-Wilk | Kolomogorov Smirnov | Shapiro-Wilk | Kolomogorov Smirnov

normality logistic normality logistic
68-160 1.80E-12 0.00010 0.00011 0.00006 0.0387 0.0702
160-187 1.53E-12 0.00043 0.00083 0.01588 0.5460 0.3408
187-204 1.03E-03 0.31730 0.40750 0.00103 0.3173 0.4075
204-220 1.07E-09 0.01938 0.03544 0.00678 0.4551 0.3126
221-236 1.09E-09 0.07637 0.11520 0.02192 0.4509 0.5142
236-249 3.74E-11 0.00309 0.01168 0.00284 0.3450 0.2995
249-259 1.10E-11 0.00381 0.01426 0.00992 0.4516 0.2865
259-268 9.08E-10 0.02498 0.04621 0.07290 0.5240 0.6547
268-274 1.94E-10 0.02069 0.05334 0.70550 0.6632 0.3295
275-280 4.04E-08 0.13770 0.26860 0.06546 0.6680 0.3275
280-284 1.13E-12 0.00135 0.00375 0.66710 0.8474 0.6001
284-287 2.70E-10 0.01262 0.03900 0.69250 0.8698 0.5270
287-289 8.91E-07 0.17030 0.15920 0.04831 0.4812 0.2129
289-300 4.17E-08 0.04494 0.11460 0.20670 0.4556 0.8048

Table 2: The p-values for the different normal distribution tests.

thicker tails. The p-value of a test refers to the probability of wrongly rejecting the
null hypothesis if it is in fact true. Small p-values suggest that the null hypothesis is
unlikely to be true. The smaller it is, the more convincing is the rejection of the null
hypothesis. The p-value is compared with a significance level. If it is smaller, the
result is significant enough to reject the null hypothesis, otherwise it is not rejected
(which does not imply that it must be true).

Table 2 shows the actual p-value per data range for the two specifics tests. Since
Figure 7 already shows that the data contain some strange large water usages, we also
tested each passenger range without these so called outliers. These results are also
presented in Table 2. Globally, for the intervals with a large number of passengers (for
which the ranges are also narrow) it can be concluded that the assumption of normality
is supported. A logistic distribution seems, however, to fit the data more closely.

Another assumption made in the normality approach is linearity of the average
water consumption with the number of passengers and linearity of the variance. For
all ranges of number of passengers, the mean and variance of the water usage have
been computed and plotted to see if there might be a linear trend. As can be seen in the
left hand side of Figure 8, the average total water consumption could be interpreted
as being linear in the number of passengers. However, this can not be said for the
variance (the right hand side of Figure 8).

5.3 Numerical example

For the numerical example, the same setting is used compared to the curve fitting
approach as explained in Section 4.2. Based on the implementation, we find iy =
309.6, i1 = 0.68, 08 = 129.4 and 6 = 0. The trendline through the absolute value
of the residuals, after subtracting the regression line from the data points, is constant.
Therefore, the variation of the total water usage on a flight can be seen as a constant,
independent of the number of passengers.

Because the estimators for the parameters are known, we have found an estimate
for the probability density function of the total water consumption .S,, on a flight. The
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Figure 8: The average water consumption on a flight seems to have a linear trend
with the number of passengers, while the variance does not.
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Figure 9: The water level based on the normality approach for the AMS-BKK flight
with the 74E aircraft and a 95% service level constraint.

service level can be determined for a given water volume in the tank by Equation (2).
The lowest values of this tank volume that satisfy the Quality of Service constraint of
95%, are given in Figure 9 for each number of passengers n.

5.4 Performance

The normality approach uses all data to say something about the water consumption
for each passenger (the average and the variance). Therefore, errors in the data do
not have a great effect on the outcome. However, the normality approach uses the
assumption of a linear growth of the variance with the number of passengers. This is
not supported by the data. Therefore, the variance becomes indifferent of the number
of passengers. This is the same as the assumption made in the current approach used
by KLM (see Section 1 for an explanation of the regression line approach used by
KLM). We have to stress here, that these findings depend on the data and are therefore
not generic. The values for tiy and ji are almost similar to the coefficients for the
regression line through the data points. Hence, this approach looks a lot like the
regression line approach. The only difference is the way how the regression line is
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shifted upward. In the normality approach, the line is shifted based on the normality
distribution A/(0, 03). Where in the regression line approach, the line is shifted based
on some linear relationship. The variance of the regression line approach is larger
compared to the findings of the normality approach.

6 Binomial Approach

In the previous approach no assumption was made on the distribution of the individual
water consumption per passenger (only i.i.d.). In this section, the extra assumption
is made that a passenger can either consume a maximum amount of water (M) with
probability p or a minimum amount (m) with probability 1 — p. So, for each passenger
k the consumption (in litres) is distributed as follows:
M  with probability p

Yy = { m  with probability 1 — p a4

This has the nice characteristic that the number of passengers (/) that uses the maxi-
mum amount of water has a binomial distribution (for the minimum amount of water
usage this holds as well).

The total water consumption on a flight with n passengers will be given by .S,, =
IM + (n—1)m = 1(M — m) + nm, such that

S, —nm 4

N bin(n.p) (15)
and the service level equals
J S, —nm %T —nm
P(S,<=T| = P <
< -8 > ( M-m = M-m
{%Tfnm
M—m

> (?)p%l—p)"‘l, j€{0,1,....8} (16)

=0

where [ is the number of passengers asking for their maximum allowance.

In order to determine the smallest number of eighths required such that the service
requirement is satisfied, the values for M, m and p have to be estimated. The first
parameter can be based on the data of a particular flight leg. We look at the maximum
water usage per passenger per hour and multiply this with the scheduled duration of
the flight.

M= max { i }D, (17)
i=1,...,.N | n;d;

where d; is the actual duration of flight ¢ and D is the scheduled duration of the flight.

We assume m=0. The estimation of the third parameter p is very important. In general,

it can be seen as a measure of the dispersion of the data within the minimum m and

the maximum M values. Let /i be the estimator for the average water consumption
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per passenger, given by the sample average

N
o= 7%‘:1 " p (18)
2z dini

A natural proposal for the estimator of p equals

A L —m
p=—" (19)
M—m

since i = Z/W\ﬁ +m(l—p).

This way of estimating the parameters is more or less using intuition. We could
however also use maximum likelihood, as we did in the previous approach. Equation
(12) can still be applied, but now the probability of observing a water usage of x on a
flight with n passengers and with M, m and p becomes

x— LT —nm S, —nm z+ LT —nm
M = P 15 <= < 16
polelmdrp) = P(| T < S | ST )
B n
= Z(l)pl(l—m“, (20)
I=A
where
x— =T —nm
A= @b
and
z+ =T —nm
B | @)

since the distribution of .S,, is given in Equation (15).

6.1 Numerical example

The same setting is used for the numerical example as in the previous approaches.
The average water consumption per passenger is 1.96 litres (this corresponds with [
expressed in Equation (18)), with a maximum of M = 8.36 litres per passenger. The
probability of using the maximum quantity of water M is calculated by Equation (19)

1.96
p= S36 = 23.42% (23)

When we use the values for the parameters m, M and p which maximize the log-
likelihood of Equation (20), we get m =0, M = 8.17 and p = 0.239. These values are

somewhat similar as we expected based upon intuition. The resulting thresholds for
the tank volume are presented in Figure 10.
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Figure 10: The water level based on the binomial approach for the AMS-BKK flight
with the 74E aircraft and a 95% service level constraint.

6.2 Performance

The binomial approach can be seen as a special case of the normaltiy approach, since
the binomial distribution gets close to a normal distribution for flights with many pas-
sengers. There are however some extra assumptions, which do not seem realistic, but
they are an easy way to model the problem. It has the nice characteristic that the
minimum and maximum water consumption is bounded.

The difference with the normality approach can be expressed in the average and
variance of the total water consumption for both approaches:

mean variance
normality o +np o8 + no?
binomial | (M —m)np +nm | (M —m)*np(1 — p)

In the binomial approach we use p = Aﬁ}%’:’n, which comes down to (J/W\ — m)np +
nm = nj for the average water consumption on a flight with n passengers. Figure
8 shows that the average water consumption is indeed linear with the number of pas-
sengers. However, the linear relationship does not go through the origin of the graph.
The variance for the binomial approach is also assumed to be linear with the number

of passengers. This is also not supported by the data.

7 Conclusions and Future Research

In this paper we developed a framework to determine the minimal amount of drinking
water on board of flights such that a predefined service level is met. We expressed
the service level as the probability that a sufficient amount of water is available to
fulfill passengers demand, wich is a Quality of Service. This way of formulating the
problem was an eye-opener for KLM and brought new insights to the problem.

The next step was to estimate the probability density function of the total water
usage on a flight. Since the available data only give information about the water
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water level the thresholds for the water level (number of passengers)
(litres) KLM approach | curve fitting approach | normality approach | binomial approach

151 - 1-13 - 1-56

302 - 14 -27 - 57-122

453 - 28 - 41 - 123 - 191
604 0-59 42-55 0-118 192 - 260
754 60 - 281 56 - 256 119 -294 261 - 294

905 282 - 294 257 - 294 - -

Table 3: The ranges of the water level for which the Quality of Service is granted,
for each approach applied to the AMS-BKK flight with the 74E aircraft.

consumption in multiples of 1/8th of the water tank, three approaches were developed
to tackle this problem. The curve fitting approach does not make any assumptions
about the form of the distribution. This method, however, results in an upper bound
on the required water level, because a subset of the data is used and not enough data
are available and also because there are errors in the data. The normality approach
uses all data to find an estimate for the distribution of the total water usage. This
also reduces the effect of the errors in the data. The final approach (the binomial
approach) uses extra assumptions on the water usage per passenger. The results from
the different approaches are summarized in Table 3. In conclusion we recommend the
normality approach, where the curve fitting approach is used as an upper bound. The
binomial approach can be used to get a better understanding what the outcome will
look like when parameters change. The regression line approach, which is currently
used by KLM, looks very similar to the findings of the normality approach. The
normality approach is based on a more general foundation and the method uses a
better understanding of the service level. Hence, this method is prefered by KLM as
well.

The normality approach could however be improved. As shown in Figure 8, the
variance of the total water consumption on a flight does not grow linearly with the
number of passengers. Therefore, other forms of relationships should be explored as
well besides linearity. The numerical example of the normality approach showed that
o and o3 play an important role. Therefore, these parameters should be modelled in
more detail. At last, based on the results of the statistical tests in Table 2, the effect
of a logistic distribution for the total water consumption on a flight should also be
investigated closer.

The numerical examples are performed on a few flight legs. Therefore, we recom-
mend to do the same calculations on several more flights. Larger data sets have to be
checked also for a more complete overview of the validity of the assumptions made in
the different approaches.
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