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Abstract

We study the problem of determining the masses of a set of weights, given one
standard weight, based on comparing two disjoint subsets of those weights with
approximately equal mass. The question is how to choose a weighing scheme, i.e.,
different pairs of subsets, such that the masses can be determined as accurately as
possible within a given number of measurements. In this paper we discuss a new
way of using the so-called STS method of comparing two approximately equal
masses, and we will give optimal weighing schemes which turn out to outperform
schemes that are currently used by national metrology institutes.

1 Introduction

In this paper we study the following problem presented to us by the Dutch metrology
institute NMi (the ‘Nederlands Meetinstituut’). Consider the following set of weights
M0, . . . ,M5: one weight of 1000 g, one of 500 g, two of 200 g, and two of 100 g,
respectively. The specified masses of these six weights are approximate, since their
true masses, let us call them µ0, . . . , µ5, are unknown. We want to estimate the true
masses by comparing the weights in a certain way to each other and to the standard
1 kg, which is a platinum-iridium cylinder stored at the NMi. The comparison of
weights is done using an electronic scale. This scale is capable of measuring small
differences in mass quite accurately. Hence, we will only compare two sets of weights
that have approximately the same total mass, and measure the difference in mass (a
direct comparison). Consequently, we have to devise a weighing scheme that tells
us which combination of weights we have to compare to which other combination of
weights. For example, we could compare weight M0 (µ0 ≈ 1000) to the combination
of weights M1, M2, M3, and M5 (µ1 +µ2 +µ3 +µ5 ≈ 1000). For practical reasons,
the two combinations in a direct comparison may not both contain the same weight.
The problem now is to find a weighing scheme for a given number of measurements
such that the relative error in the masses is as small as possible. To solve this problem,
we will first take a closer look at the weighing procedure.
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2 The STS weighing procedure
Suppose that we have selected two sets of weights with approximately the same total
mass. How do we measure the difference in mass? The NMi uses what is called an
STS-procedure. One set of weights is called the Standard set (S), and the other set
is called the Test set (T). The set S is placed on the scale, at which time the scale is
set to 0. Then the set S is removed and placed on the scale again, resulting in the
first measurement, which we call x1. After this, the set S is removed, and the set T
is placed on the scale, resulting in measurement x2. We then continue by alternating
sets S and T, so the third measurement is of set S, the fourth of T, and so on; hence the
name STS-procedure.

The data gathered by the STS-procedure will consist of k measurements x1, . . . ,
xk. If we denote the mass of set S by µS , and the mass of set T by µT , we model the
measurements xi as realizations of the following random variables:

xi = 1{i=even}(µT − µS) + D(i) + Vi. (1)

Here, Vi is a random effect (a measurement error), and we model the Vi’s as inde-
pendent and identically distributed random variables. The function D(i) models the
drift of the electronic scale, which is observed in practice: after each measurement
the scale is set off by a small amount. We will now make some additional important
assumptions:

(A1) We assume that the Vi’s are independent, and that

Vi ∼ N(0, α2µ2
S).

Here α > 0 is an unknown constant.

(A2) We assume that for all 1 ≤ j ≤ k − 2,

1
2

(
D(j) + D(j + 2)

)
−D(j + 1) ≈ 0,

i.e., this quantity is negligibly small.

Assumption (A1) implies that the measurement error Vi is proportional to the mass
being weighed. Here we use that µT ≈ µS , so the difference is small compared to the
total mass. Assumption (A2) is exactly fulfilled when the drift is linear. In fact, we
only assume that the drift between two consecutive measurements is almost equal.

Having obtained the measurements x1, . . . , xk, how should we use them to esti-
mate the difference in mass ∆µ given by

∆µ := µT − µS?

To benefit from Assumption (A2), we define the following auxiliary variables for 1 ≤
j ≤ k − 2:

∆mj = (−1)j+1
(
xj+1 − 1

2 (xj + xj+2)
)
,

so

∆m1 = x2 − 1
2 (x3 + x1),

∆m2 = 1
2 (x4 + x2)− x3,
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and so forth. Using Equation (1) and Assumption (A2), we find that
∆m1

∆m2

...
∆mk−2

=


1
1
...
1

∆µ+


− 1

2 1 − 1
2 0 . . . 0 0 0

0 1
2 −1 1

2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . ∓ 1

2 ±1 ∓ 1
2




V1

V2

...
Vk

 .

If we define, for k ≥ 3

Bk =


− 1

2 1 − 1
2 0 . . . 0 0 0

0 1
2 −1 1

2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . ∓ 1

2 ±1 ∓ 1
2

 and 1 =


1
1
...
1

 ,

we see that
∆m = 1∆µ + BkV. (2)

Let Z ′ denote the transpose of an arbitrary matrix or vector Z. To illustrate how we
should calculate an estimate for ∆µ we choose an invertible (k− 2)× (k− 2) matrix
Dk such that

DkD′
k = BkB′

k =: Σk.

This is always possible, because Σk is symmetric and positive definite. Now we mul-
tiply Equation (2) by D−1

k :

D−1
k ∆m = D−1

k 1∆µ + D−1
k BkV. (3)

We know that

D−1
k BkV ∼ Nk−2(0, α2µ2

SD−1
k BkB′

kD′−1
k ) d= Nk−2(0, α2µ2

SI),

where I is the identity matrix. This shows that Model (3) corresponds to a standard
linear model

Y = Xβ + U,

with Y = D−1
k ∆m, X = D−1

k 1, β = ∆µ, and U = D−1
k BkV . For this model the

least squares estimator is given by

β̂ = (X ′X)−1X ′Y,

which gives us

∆̂µ =
1′Σ−1

k ∆m

1′Σ−1
k 1

. (4)

This estimator differs from the estimator that is normally used in the STS-procedure,
namely the average of all the ∆mi’s. In fact, Estimator (4) is a weighted average of
the ∆mi’s, where the weights may be negative! For example, when k = 10 (i.e., there
are ten measurements in the STS procedure), we get that

∆̂µ = (0.30,−0.10, 0.25, 0.05, 0.05, 0.25,−0.10, 0.30) ·∆m.



88 Proceedings of the 52nd European Study Group with Industry

We can show that in this case, the variation in the least squares estimator is almost
10% smaller than the variation in the average of the ∆mi’s. It is true, however, that as
k grows, the ratio of the two variances tends to 1.

We know that the variance of the least squares estimator is given by

Var(∆̂µ) =
α2µ2

S

1′Σ−1
k 1

. (5)

The usual unbiased estimator of this variance is given by

S2 =
(

∆m′Σ−1
k ∆m−

(1′Σ−1
k ∆m)2

1′Σ−1
k 1

)
/(k − 3).

This follows directly from the fact that Model (3) is a standard linear model.

3 Weighing schemes using the STS-procedure
Now that we know how to deal with the STS-procedure, we would like to have some
idea of which weighing scheme we should use to accurately determine the masses
µ0, . . . , µ5. Since all the weights are unknown, we need to use the standard 1 kg
weight in our weighing scheme. However, we do not want to use this precious weight
very often, so we only use it to determine µ0, which is approximately 1 kg. We proceed
with the STS-procedure until we have determined µ0 up to a certain accuracy. From
then on, we will use different combinations of weights to determine µ1, . . . , µ5 in
terms of µ0. In those combinations we will not use the standard 1 kg.

A combination of weights that can be used for the STS-procedure, can be de-
scribed by a vector containing 5 entries, each of which is either −1, 0, or +1. Each
entry corresponds to one of the weights µ1, . . . , µ5 in the following way: a 0 indicates
that the weight is not included, a −1 indicates that the weight is included in the Stan-
dard set of the STS-procedure, and a +1 indicates that the weight is included in the
Test set of the STS-procedure. The reason that there is no entry for µ0 is because the
total mass of the Standard set has to be approximately equal to the total mass of the
Test set. This means that the entry for µ0 is determined by the other entries. Also, we
define new parameters

∆µ =


∆µ1

∆µ2

∆µ3

∆µ4

∆µ5

 =


µ1 − 0.5 µ0

µ2 − 0.2 µ0

µ3 − 0.2 µ0

µ4 − 0.1 µ0

µ5 − 0.1 µ0

 .

Note that ∆µ is small compared to µ.
Now suppose we have a combination of weights characterized by a (row) vector

w = (w1, . . . , w5). Define for convenience

(M0,M1,M2,M3,M4,M5) = (1, 0.5, 0.2, 0.2, 0.1, 0.1),

so we have that µi ≈ Mi, for 0 ≤ i ≤ 5. Define

w0 = −
5∑

i=1

Miwi. (6)
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Then w0 has to be either −1, 0 or 1. This means that there are essentially only ten
possible choices of w, not taking into account interchanging the Standard set and the
Test set (this corresponds to taking −w). These ten possible combinations are given
in the following matrix W :

W =



1 1 1 1 0
1 1 1 0 1

−1 1 1 1 0
−1 1 1 0 1

0 −1 1 −1 1
0 −1 1 1 −1
0 −1 1 0 0
0 −1 0 1 1
0 0 −1 1 1
0 0 0 −1 1


.

Given a combination w and using Equation (6), we have for our STS-procedure that

µS =
∑

0≤i≤5:wi=−1

µi and µT =
∑

0≤i≤5:wi=+1

µi.

This means that

µT − µS =
5∑

i=0

wiµi =
5∑

i=1

wi∆µi = w∆µ.

If we take k measurements in the STS-procedure, we see that Model (3) corresponds
to

D−1
k ∆m = D−1

k 1w∆µ + D−1
k BkV, (7)

where
D−1

k BkV ∼ Nk−2(0, α2µ2
SI). (8)

It is of course impossible to estimate the full vector ∆µ from these data, we can only
estimate the linear combination w∆µ. If we repeat the STS-procedure for a suitable
set of different combinations, we can estimate ∆µ as well. A choice of different
combinations of weights is called a weighing scheme. A weighing scheme can be
represented by a matrix A, consisting of different rows A(l), which correspond to
rows from the matrix W , i.e., the possible combinations of weights. For now we will
assume that each row of A corresponds to k = 20 STS measurements (the number
used by the NMi), using that particular combination of weights.

Equation (8) shows that we have to be a bit careful: changing the combination
of weights might change µS , which would imply that in the full model, that takes all
chosen combinations of weights into account, we would not have a measurement error
with a constant variance. The way to handle this is quite straightforward: we rescale
all STS measurements using a weight-combination w by dividing them by the total
mass of the Standard set. With a slight abuse of notation, the total mass µS(w) of the
Standard set given w is in good approximation given by

µS(w) =
5∑

i=0

Mi1{wi=+1}.
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Model (7) then becomes

D−1
k ∆m

µS(w)
=

D−1
k 1w∆µ

µS(w)
+

D−1
k BkV

µS(w)
,

where
D−1

k BkV

µS(w)
∼ Nk−2(0, α2I).

Now if our weighing scheme A consists of s rows A(1), . . . , A(s), then our full linear
model becomes

(D−1
k ∆m(1))1
µS(A(1))

...
(D−1

k ∆m(1))k−2

µS(A(1))

(D−1
k ∆m(2))1
µS(A(2))

...
(D−1

k ∆m(2))k−2

µS(A(2))

...
(D−1

k ∆m(s))1
µS(A(s))

...
(D−1

k ∆m(s))k−2

µS(A(s))



=



(D−1
k 1)1 A(1)∆µ

µS(A(1))

...
(D−1

k 1)k−2 A(1)∆µ

µS(A(1))

(D−1
k 1)1 A(2)∆µ

µS(A(2))

...
(D−1

k 1)k−2 A(2)∆µ

µS(A(2))

...
(D−1

k 1)1 A(s)∆µ

µS(A(s))

...
(D−1

k 1)k−2 A(s)∆µ

µS(A(s))



+ U, (9)

where ∆m(l) is the vector of k − 2 measurements from the STS-procedure using the
weight combination A(l) and U ∼ Ns(k−2)(0, α2I). Now define

∆m̃(l) =
∆m(l)

µS(A(l))
and Ã(l) =

A(l)
µS(A(l))

.

Use a matrix-block notation to see that Model (9) becomes D−1
k

. . .
D−1

k


 ∆m̃(1)

...
∆m̃(s)

 =

 D−1
k 1

. . .
D−1

k 1

 Ã∆µ + U.

This is a standard linear model and the least squares estimator is given by

∆̂µ =

Ã′

 1′Σ−1
k 1

. . .
1′Σ−1

k 1

Ã


−1

Ã′

 1′Σ−1
k

. . .
1′Σ−1

k

∆m̃.

The covariance matrix of this estimator is given by

Cov(∆̂µ) = α2

Ã′

 1′Σ−1
k 1

. . .
1′Σ−1

k 1

 Ã


−1

. (10)
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The diagonal of the covariance matrix gives us the variances of the separate estimators
for ∆µ1, . . . ,∆µ5. Clearly, we would like to choose our weighing scheme A such
that these variances are minimized in some way. We believe that it is most sensible to
minimize the relative error in each weight, which is why we choose the sum of squares
of the relative errors as a measure of inaccuracy. Thus, we wish to find a weighing
scheme A that minimizes the “loss function”

L(A) =
5∑

i=1

Var(∆̂µi)
M2

i

.

In the next sections we will discuss our findings and make a comparison with schemes
that are actually used by national metrology institutes, such as the NMi, the Slovak
metrology institute SMU, and the German metrology institute PTB. We already wish
to note that Equation (10) can be easily generalized to the case where each row of A
has a different number of STS measurements: simply use the appropriate k for each
Σk in the block matrix.

For the sake of completeness, we will write down the estimate for α2. Define

S =

 1′Σ−1
k 1

. . .
1′Σ−1

k 1

 .

Then
α̂2 =

(
∆m̃′S∆m̃− ∆̂µ

′
Ã′SÃ∆̂µ

)
/(n− 1),

where n is the length of ∆m̃.

4 Optimal weighing schemes for the NMi
The Dutch metrology institute NMi currently uses a weighing scheme with 8 combi-
nations of weights (i.e., eight rows of W ) and 20 STS measurements for each combi-
nation (i.e., k = 20). Let W (l) denote the l-th row of the matrix W . Then the NMi
weighing scheme ANMi is given by

ANMi =
(
W (1),W (2),W (3),W (4),W (5),W (6),W (8),W (9)

)
,

with the following uncertainty associated with it

L(ANMi) = 1.1812 · α2 = 1.1812,

if we assume that α = 1. We can do this without loss of generality, since we are
comparing different weighing schemes with each other that all have the same factor
α2. Therefore, we shall assume that α = 1 in the following.

In order to improve upon this weighing scheme we have certain degrees of free-
dom. Firstly, we can choose different weighing schemes A by choosing different
combinations of weights from the matrix W . We shall describe matrix A by listing
the indices of the chosen rows W (l), e.g., the indices of ANMi are 1, 2, 3, 4, 5, 6, 8,
and 9. Secondly, we can change the number of combinations we choose from W , this
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s indices of A =
`
W (1), . . . , W (s)

´
L(A)

8 1, 1, 2, 4, 7, 8, 9, 10 0.8468
9 1, 1, 2, 3, 4, 7, 8, 9, 10 0.7242

10 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.6441
11 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.5963
12 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10, 10 0.5507
13 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 9, 10, 10 0.5054
14 1, 1, 1, 2, 2, 3, 4, 4, 7, 8, 8, 9, 10, 10 0.4655

Table 1: Optimal weighing schemes for different s

number will, as before, be denoted by s. Finally, we can change the number of STS
measurements per combination, this number was already denoted by k.

Let us now study what the optimal weighing scheme is for the NMi, and how this
can be improved by increasing the number of combinations s in the weighing scheme.
Table 1 summarizes these experiments (calculated using MatLab) and shows that the
optimal weighing scheme with the same parameters used at the NMi (i.e., s = 8 and
k = 20) already gives a reduction in uncertainty of around 28 percent. Note that there
can be more weighing schemes with the same uncertainty which for simplicity we
have not mentioned in Table 1. The uncertainty can be reduced even more by adding
more combinations of weights to the scheme.

As a side remark, the Slovak metrology institute SMU (the ‘Slovenský Metrolog-
ický Ústav’) has the same set of weights. However, they use a weighing scheme with
s = 14 of which the indices are given by 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, and 10. The
associated uncertainty with this weighing scheme is given by L(ASMU) = 0.7285. Ta-
ble 1 shows that the optimal weighing scheme reduces the uncertainty with 36 percent
compared to current practice.

Note that the optimal weighing schemes do not include measurements W (5) and
W (6), which the NMi does include. Instead, the optimal schemes include mea-
surements W (7) and W (10). One could ascribe this to rounding errors in the cal-
culation, however, all solutions within 1 percent of the optimal solution have this
property as well. This observation can be explained if one realizes that W (5) and
W (6) provide the same information as W (7) and W (10), only with a greater uncer-
tainty associated with them. This can be seen by adding and subtracting the rows:
W (5) + W (6) = 2 × W (7), and W (5) − W (6) = 2 × W (10). Hence, both sets
provide the same information, however, the set with W (7) and W (10) only uses one
weight on the scale and thus adds less uncertainty to the measurements.

Although Table 1 lists optimal weighing schemes, it disregards the total number
of measurements. For fixed s and k we need in total s × k measurements to deter-
mine the masses. The current weighing scheme needs 8 × 20 = 160 measurements.
The measurements used to be done by hand, constraining the maximum number of
measurements in a weighing scheme. However, due to the introduction of automatic
weighing devices at the NMi the maximum number of measurements has been in-
creased to around 280 to 300. In Table 2 we have computed the optimal weighing
schemes as a function of the total number of measurements from 280 to 300. From
the table we can see that with these parameters a reduction of around 62 percent in
uncertainty can be achieved. We again mention that there might be more weighing
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s × k s k indices of A =
`
W (1), . . . , W (s)

´
L(A)

280 14 20 1, 1, 1, 2, 2, 3, 4, 4, 7, 8, 9, 9, 10, 10 0.4655
280 10 28 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.4659
280 8 35 1, 1, 2, 4, 7, 8, 9, 10 0.4940
286 13 22 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 9, 10, 10 0.4613
286 11 26 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.4633
288 9 32 1, 1, 2, 3, 4, 7, 8, 9, 10 0.4602
288 12 24 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10, 10 0.4623
288 8 36 1, 1, 2, 4, 7, 8, 9, 10 0.4799
290 10 29 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.4513
294 14 21 1, 1, 1, 2, 2, 3, 4, 4, 7, 8, 9, 9, 10, 10 0.4461
296 8 37 1, 1, 2, 4, 7, 8, 9, 10 0.4679
297 9 33 1, 1, 2, 3, 4, 7, 8, 9, 10 0.4474
297 11 27 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.4479
299 13 23 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 9, 10, 10 0.4435
300 10 30 1, 1, 2, 2, 3, 4, 7, 8, 9, 10 0.4358
300 12 25 1, 1, 1, 2, 2, 3, 4, 7, 8, 9, 10, 10 0.4458

Table 2: Optimal weighing schemes for different s and k

schemes that achieve the same uncertainty, but which for simplicity we have not in-
cluded into Table 2.

5 Improved weighing schemes for the PTB
Let us consider the set of weights used by the German metrology institute PTB (the
‘Physikalisch-Technische Bundesanstalt’), as reported in Kochsiek and Gläser [1].
Apart from the standard 1000 g, this set has another weight of 1000 g, two of 500 g,
two of 200 g, and two of 100 g. For this set there are 104 possible combinations
of weights in the matrix W instead of 10. Identifying by full enumeration the opti-
mal weighing scheme with say s = 10 out of all 104 combinations requires enormous
computational resources. Therefore we only consider a reduced class of possible com-
binations, namely those combinations involving on one side only one weight. Note
that this is a reasonable choice by the same argument we used to exclude W (7) and
W (10) in the previous section. The matrix W now becomes

W =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0
0 −1 −1 0 0 0 0
0 −1 0 −1 −1 −1 0
0 −1 0 −1 −1 0 −1
0 0 −1 −1 −1 −1 0
0 0 −1 −1 −1 0 −1
1 −1 −1 0 0 0 0
1 −1 0 −1 −1 −1 0
1 −1 0 −1 −1 0 −1
1 0 −1 −1 −1 −1 0
1 0 −1 −1 −1 0 −1
0 1 −1 0 0 0 0
0 1 0 −1 −1 −1 0
0 1 0 −1 −1 0 −1
0 0 1 −1 −1 −1 0
0 0 1 −1 −1 0 −1
0 0 0 1 −1 0 0
0 0 0 1 0 −1 −1
0 0 0 0 1 −1 −1
0 0 0 0 0 1 −1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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indices of A =
(
W (1), . . . ,W (10)

)
L(A)

Aopt1 1, 3, 6, 6, 8, 13, 16, 18, 19, 20 1.1356
Aopt2 1, 4, 5, 5, 9, 14, 15, 18, 19, 20 1.1356
APTB 1, 2, 7, 12, 13, 16, 17, 18, 19, 20 1.6244

Table 3: Improved weighing schemes for the PTB set of weights

Having specified the matrix W , we can repeat the calculations for this set of weights
using the parameters s = 10 and k = 20. Table 3 shows the weighing schemes Aopt1
and Aopt2 that are optimal in the reduced class, and compares them to the scheme APTB
of the PTB. We can see that the optimal weighing schemes even in the reduced class
leads to a 30 percent reduction in uncertainty compared to the PTB weighing scheme
presently used.
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