
Partitioning a Call Graph

Rob H. Bisseling∗ Jarosław Byrka† Selin Cerav-Erbas‡

Nebojša Gvozdenović† Mathias Lorenz‡ Rudi Pendavingh§

Colin Reeves¶ Matthias Röger§ Arie Verhoeven§

Abstract
Splitting a large software system into smaller and more manageable units has

become an important problem for many organizations. The basic structure of a
software system is given by a directed graph with vertices representing the pro-
grams of the system and arcs representing calls from one program to another.
Generating a good partitioning into smaller modules becomes a minimization
problem for the number of programs being called by external programs. First,
we formulate an equivalent integer linear programming problem with 0–1 vari-
ables. Theoretically, with this approach the problem can be solved to optimality,
but this becomes very costly with increasing size of the software system. Second,
we formulate the problem as a hypergraph partitioning problem. This is a heuris-
tic method using a multilevel strategy, but it turns out to be very fast and to deliver
solutions that are close to optimal.

1 Introduction
In recent years, the capabilities of information technology have increased tremen-
dously. At the same time, large software systems in today’s organizations such as
banks, health care providers, or government agencies, have become costly to main-
tain. To reduce the maintenance costs, the systems need to be split into smaller, more
manageable modules (typically 5–10 modules). Each module can then be assigned to
a separate team of maintainers. A partitioned system needs interfaces for the com-
munication between modules; the number of interfaces is the main cost factor. In a
good partitioning, the size of each module is restricted and the total size of the inter-
face is minimized. To find such a partitioning is a job for a trained expert, but when
the system is large an automated suggestion for a partitioning into modules becomes
useful.

A software system can be described by a call graph. A call graph is a directed
graph, where vertices represent programs, classes, or similar program units, and where
an arc (v, w), i.e. v → w, means that program v calls program w. Figure 1 shows a
complete call graph of a Java software system named Java1 and Figure 2 shows part
of this graph in detail. Each vertex may have a weight, such as the number of lines

∗Universiteit Utrecht
†Centrum voor Wiskunde en Informatica
‡Université Catholique de Louvain
§Technische Universiteit Eindhoven
¶Coventry University

95

96 Proceedings of the 52nd European Study Group with Industry

Figure 1: Call graph of the software system Java1, which was provided by SIG.
The number of vertices (programs) is N = 158.

Partitioning a Call Graph 97

Figure 2: Detailed view of the bottom part of the call graph from Figure 1 showing
the arcs between the programs. Note for instance that program 65 calls program
81. Program 81 calls 150 and vice versa. Duplicate calls may occur; these can be
removed without affecting the problem.

of code of the corresponding program. Here, we assume that less detail is required so
that all programs are equally costly to maintain, and hence all vertices have weight 1.
A module contains a subset of the vertices, representing a subset of the programs. The
size of a module equals the sum of the vertex weights in the corresponding subset;
the size of its interface equals the number of vertices which have an incoming arc
from a different module. Thus, the software splitting problem can be formulated as a
partitioning problem of a call graph.

The Software Improvement Group (SIG, http://www.sig.nl), located in
Diemen (the Netherlands), provides tools which help organizations to understand their
software better. They are interested in partitioning algorithms which solely exploit the
structure of the call graph to split the software and which are useful for various graph
sizes, from hundreds of vertices to over a million.

The call-graph partitioning problem was posed by SIG at the opening day of the
Study Group Mathematics with Industry 2005 in Amsterdam. We have studied the
problem and in this report we propose our solutions. The following sections present
different formulations of the same problem and different solution methods. In Section
2, the problem is mathematically formulated as a graph partitioning problem, and then
translated into an integer linear programming (ILP) problem with variables taking
values only in {0,1}, which can be solved by standard commercial software such as
CPLEX [4]. Because the ILP problem is NP-hard, it cannot be solved to optimality
for very large call graphs (more than 1500 vertices). Therefore, Section 3 describes
a very fast heuristic method which is based on a multilevel approach to hypergraph
partitioning. Section 4 compares the different methods for some real call graphs of
software systems written in Java and COBOL, which were provided by SIG. Finally,
Section 5 presents our conclusions and recommendations.

98 Proceedings of the 52nd European Study Group with Industry

2 Solution by integer linear programming
We will first formulate the problem as a graph partitioning problem and then translate
it into an ILP problem with 0–1 variables.

2.1 Graph partitioning problem
A call graph is a directed graph D = (V,A), where the vertex set V is the set of
programs of the software system and the arc set A := {(u, v) ∈ V × V | u calls v}.
Given a subset of programs U ⊆ V , the interface of U in D is the set of all programs
in U called by programs not in U :

ID(U) := {u ∈ U | (v, u) ∈ A for some v ∈ V \ U}. (1)

We call u ∈ ID(U) an interface vertex of U . A partition of a set V is a collection of
nonempty, pairwise disjoint subsets of V , such that the union of these subsets is V .

With these definitions, a mathematical formulation of the graph partitioning prob-
lem is:

Given: A directed graph D = (V,A), K ∈ N , L ∈ N
Find: A partition V1, . . . , VL of V such that |Vl| ≤ K for each l, and such that∑L

l=1 |ID(Vl)| is as small as possible.

2.2 Integer linear programming problem
Consider the following ILP problem:

minimize
∑L

l=1

∑
v∈V xvl

subject to
∑L

l=1 yvl = 1 for all v ∈ V∑
v∈V yvl ≤ K for l = 1, ..., L

xvl ≤ yvl for l = 1, ..., L and for all v ∈ V
yvl ≤ yul + xvl for l = 1, ..., L and for all (u, v) ∈ A
xvl, yvl ∈ {0, 1} for l = 1, ..., L and for all v ∈ V

It is not difficult to see that if V1, . . . , VL is a proper solution to the graph partitioning
problem, then by setting

yvl = 1 if v ∈ Vl, and 0 otherwise, (2)

xvl = 1 if v is an interface vertex of Vl, and 0 otherwise, (3)

we obtain a feasible solution of the above ILP problem. Conversely, given an optimal
solution to the ILP problem, taking

Vl := {v ∈ V | yvl = 1}, (4)
I := {v | xvl = 1 for some l}, (5)

will yield an optimal solution V1, . . . , VL to the call-graph partitioning problem with a
set of interface vertices I . (It is straightforward to adapt this formulation to the variant

Partitioning a Call Graph 99

of the call-graph partitioning problem where each program has a certain weight and
the total weight of each module is bounded.)

The general ILP problem, which is to solve

min{cTx | Ax ≤ b, x ∈ Zn} (6)

for a given matrix A and vectors b, c, is NP-hard, see [6]. The standard solution
methods are efficient in practice when the polyhedron P := {x ∈ Rn | Ax ≤ b} is
close to the convex hull of P ∩ Zn. We have attempted to create a formulation of our
problem with this property — which is why we chose this formulation over others with
less variables/constraints. For detailed information on integer programming theory
and methods, see [7]. A textbook is [9].

In our formulation of the call-graph problem, each feasible partition V1, . . . , VL

is represented at least L! times, since each permutation of the subsets of the parti-
tion yields a different binary vector y. This decreases the efficiency of the standard
solution methods, so some form of symmetry breaking is desired. To eliminate the
abundance of representations of essentially the same feasible solution, we added, for
certain vertices s1, . . . , sL−1, the set of constraints

l∑
i=1

ysli = 1 for l = 1, ..., L− 1 (7)

to our model. Thus, the first vertex is fixed in V1, the second in V1 ∪ V2, and so on.
These constraints will allow at least one representation y of each feasible partition
V1, . . . , VL in the feasible set (and exactly one for feasible partitions with all fixed
vertices in different subsets). We chose s1, . . . , sL−1 to be the set of L − 1 vertices
of largest outdegree in D (i.e., with the largest number of outgoing arcs). The choice
of s1, ..., sL−1 and our method of symmetry breaking is still not optimal. Solving the
symmetry problem properly, however, seems the key to solving the call-graph problem
through an integer programming formulation. Further improvement of our method is
up to future research.

3 Solution by multilevel hypergraph partitioning
We will reformulate the graph partitioning problem as a hypergraph partitioning prob-
lem and then present a heuristic solution method based on a multilevel approach.

3.1 Hypergraph partitioning problem

A hypergraph H = (V,N) consists of a set of vertices V = {v1, . . . , vN} and a set
N of hyperedges, or nets, which are subsets of V . A hypergraph is a generalization of
an undirected graph: a hyperedge connects an arbitrary number of vertices, whereas
an edge in a graph connects two vertices; an edge can be viewed as a subset {vi, vj}
of size two.

As before, let the structure of a software system be given by a directed graph
D = (V,A), where V = {v1, ..., vN} represents the set of programs and (vi, vj) ∈ A

100 Proceedings of the 52nd European Study Group with Industry

indicates that program i calls program j. We consider the hypergraph H = (V,N)
and choose the set of nets as

N =
N⋃

j=1

nj , (8)

where net nj consists of program j and all programs that call j,

nj := {vj} ∪ {vi | 1 ≤ i ≤ N and (vi, vj) ∈ A}. (9)

A net is broken by a given partition V1, . . . , VL if its vertices are in different subsets of
the partition, i.e., in different modules. A net nj is broken if and only if program j is
an interface program. This is because for a broken net nj , at least one calling program
i must be in a module different than the module of j. The software splitting problem
has become a hypergraph partitioning problem where we are looking for a partition
that minimizes the total interface size,

|I| := |{j | 1 ≤ j ≤ N and nj is broken}|.

A convenient way of looking at a graph is to consider its adjacency matrix. We
describe the calls between the N programs by the N × N adjacency matrix A =
(aij)i,j=1,...,N , with aij ∈ {0, 1}, defined by

aij =

{
1 if program i calls program j,

0 otherwise.
(10)

Thus, aij = 1 if and only if (vi, vj) ∈ A. Note that we identify the matrix A with
the arc set A. We add a unit diagonal to the adjacency matrix. This way, the vertices
of net nj correspond exactly to the positions of nonzeros in column j of the matrix.
Figure 3 shows an extended adjacency matrix.

A traditional application area of hypergraph partitioning is the design of electronic
circuits. MLpart [2] is a hypergraph partitioner specifically developed for this purpose.
Çatalyürek and Aykanat [3] introduced hypergraph partitioning for the purpose of dis-
tributing the work in multiplying a sparse matrix and a vector on a parallel computer,
which is the core computation of iterative linear system solvers. They implemented
the partitioning in software called PaToH. The package Mondriaan, recently devel-
oped at Utrecht University [8], is a two-dimensional sparse matrix partitioner which
cuts the matrix recursively into smaller rectangular shapes, similar to the paintings
of the Dutch painter Piet Mondriaan (1872–1944). Each cut is based on hypergraph
bipartitioning, which is explained in the following.

Multilevel methods for graph or hypergraph partitioning reduce the size of the
problem repeatedly by merging vertices with similar connectivity until the remaining
problem is sufficiently small (a few hundred vertices), then solve the smaller problem
for instance by a local heuristic such as the Kernighan–Lin [5] algorithm, and finally
unmerge the merged vertices at the different levels, each time refining the solution by
a simpler method such as trying to move interface vertices to the other subset of the
partition. Typically, each level of merging halves the problem size. A good similarity
criterion for merging, used in both PaToH and Mondriaan, is the inner product of the
corresponding rows in the adjacency matrix. A large inner product for rows i and i′

Partitioning a Call Graph 101

Figure 3: 158 × 158 adjacency matrix of the problem Java1, provided by SIG,
which has 158 programs and 422 calls from programs to other programs. The matrix,
extended by a unit diagonal, has 580 nonzero elements. It is sparse, since the vast
majority of its elements is zero.

means that many nonzeros from those rows occur in the same positions, and hence
programs i and i′ often call the same program j. Multilevel methods, first proposed
by Bui and Jones [1], have been very successful in graph and hypergraph partitioning.
The Kernighan–Lin algorithm works by trying moves of a vertex to the other subset
of the partition, each time accepting the move with the largest gain, i.e., reduction
in number of broken nets. A temporary increase is also accepted if this leads to a
reduction later on. Several passes are made through the whole set of vertices. This
algorithm is local in nature and hence only works for a limited number of vertices; for
larger problem sizes, the algorithm easily gets stuck in a local minimum.

To apply Mondriaan (version 1.01) to our problem, we had to make the following
adjustments. First, we want to use the matrix partitioner Mondriaan only in one-
dimensional (1D) mode, because the partitioning of the vertices we are looking for
corresponds to a partitioning of the rows of the adjacency matrix. Our aim is to parti-
tion the rows such that as few columns (i.e. nets) as possible are broken. Fortunately,
1D partitioning is a standard option of Mondriaan. Second, Mondriaan penalizes ev-
ery additional cut of a broken net. This is because each additional column part cor-
responds to an extra processor involved in the handling of the matrix column in a
parallel computation. In the present application, however, the situation is different:
once a program becomes an interface program, and serves at least one outside mod-

102 Proceedings of the 52nd European Study Group with Industry

ule, it does not matter how many such modules it serves. Therefore, we can further
break the already broken nets for free. Of course, this will have large effects on our
minimization procedure. We modified Mondriaan in various places to take this into
account. Third, the work load assumed by Mondriaan is just the number of nonzeros
in the corresponding matrix part. In the present application, the workload is 1 for all
programs, i.e., for all matrix rows. This was a relatively easy change, since internally
Mondriaan already uses arbitrary weights (to enable merging vertices).

4 Comparison of the partitioning methods

4.1 Integer linear programming

We used CPLEX 6.3 (most recent version is 9.0, see [4]) on a 2.8 GHz Intel Xeon
processor to solve the ILP model of the call-graph problem. To improve the running
times, we provided CPLEX with a branching order, specifying that it should branch
on xvl before xwl and on yvl before ywl if the outdegree of v in D is larger than the
outdegree of w in D, and on y-variables before x-variables.

Table 1 shows the results. The numbers |V | given are less than those for the
original call graph, because vertices without outgoing arcs (corresponding to empty
rows in the adjacency matrix) were removed beforehand. These programs can be
assigned to any module without affecting the interface size |I|. The value L = 8 was
chosen, because typically L is in the range 5–10, and because the current version of
Mondriaan requires L to be a power of 2. The value of K was chosen such that no
module would have more than 20% extra work compared to the average work of a
module: K = b1.2|V |/Lc, where |V | refers to the original call graph. We removed
the small problem Java2 with V = 19 and |A| = 47 from our test set, because it
is infeasible for the parameter of 20% we chose; it would lead to K = 2, so that
KL = 16 < V . (Of course, we can still find a solution if we are willing to accept
more than 20% extra work.) The table gives the best result |I| found, a lower bound on
the best result possible, and the fraction |I|/|V | of programs that are actually interface
programs in the best solution, where |V | refers to the original call graph.

We terminated problems Java3 and Cobol4 after about 4 days of CPU time;
we expected that the gap between the best solution and the lower bound was going
to be closed only at an extremely slow rate. Problem Cobol2 aborted due to lack
of memory; here, our current strategy for breaking symmetry apparently failed. But
inspection of the last lower bound revealed that there could not be a solution better

Problem |V | |A| K L best |I| lower best running remarks
bound |I|/|V |(%) time (s)

Java1 144 422 23 8 26 26 16.5 2.04× 102

Java3 837 5252 127 8 251 230 29.5 3.59× 105 terminated
Java4 15 39 2 8 11 11 68.8 0.22
Cobol1 947 1900 209 8 13 13 0.9 1.06× 103

Cobol2 449 659 81 8 6 6 1.1 7.51× 104 aborted
Cobol3 1145 2686 203 8 51 51 3.8 3.78× 105

Cobol4 1100 2951 167 8 32 28 2.9 3.60× 105 terminated

Table 1: Integer linear programming results

Partitioning a Call Graph 103

than the one found anyway. Considering intermediate results, the best solution found
for the larger problems after a day of CPU time was 251 for Java3, 57 for Cobol3,
and 47 for Cobol4.

4.2 Multilevel hypergraph partitioning

Table 2 presents the results for 10 runs of the program Mondriaan, version 1.01, mod-
ified for this purpose. Mondriaan was run on an 867 MHz Apple PowerBook G4
computer running MacOS 10.2. Since Mondriaan uses a random number generator,
we can run it with different random number seeds and get different solutions. The
table shows the best result obtained in 10 runs, the average result, and also the average
running time. The default settings of Mondriaan were used, except that the program
was run in 1D mode and with random seed. An important default is that the multilevel
algorithm moves over to the Kernighan–Lin algorithm when the number of vertices is
200 or less. This means that problems Java1 and Java4 were in fact solved by pure
Kernighan–Lin. The number |V | is the number of the original call graph; |A| is the
number of nonzeros of the matrix extended by a unit diagonal. The K and L values
were chosen identical to those for the ILP solution. Therefore, the number of interface
programs |I| obtained by the two methods can be compared. (For the timings, the dif-
ference between the computers used in our experiments must be taken into account.)

Comparing Tables 1 and 2, we note that 5 out of the 7 feasible problems were
solved to optimality by the ILP method and 1 by hypergraph partitioning (HP). The
results of the ILP method are always better than those of HP, but never by more than
a factor 1.63. The HP method on the other hand is much faster than the ILP method;
the solution is almost instantaneous. The HP results can be improved by fine-tuning
the Mondriaan parameters for the application at hand, instead of using the defaults
which were chosen to obtain good performance for a wide range of applications. A
quick trial of a few different parameter settings reduced |I| for Cobol4 from 52 to
47; further reduction should be possible.

Figure 4 compares the number of interface programs obtained by the ILP and HP
methods. All ILP solutions are within a factor 1.14 from optimal; all HP solutions
within a factor 1.86. Note that in fact they may even be closer, since the comparison
is with a lower bound, not necessarily a known minimum. Figure 5 shows a solution
obtained by the HP method for the problem Java1.

Problem |V | |A| best |I| avg |I| best running
|I|/|V | (%) time (s)

Java1 158 580 30 30.7 19.0 0.06
Java3 851 6103 275 283.2 32.3 0.54
Java4 16 55 11 11.2 68.8 0.001
Cobol1 1398 3298 17 22.4 1.2 0.33
Cobol2 545 1204 10 11.5 1.8 0.12
Cobol3 1357 4043 69 74.6 5.1 0.34
Cobol4 1116 4067 52 56.5 4.7 0.41

Table 2: Hypergraph partitioning results

104 Proceedings of the 52nd European Study Group with Industry

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 #
 in

te
rf

ac
e

pr
og

ra
m

s

Problem

HP
ILP

Figure 4: Number of interface programs obtained by the integer linear program-
ming (ILP) method and the hypergraph partitioning (HP) method. The results are
normalized by the lower bound provided by the ILP method. A value 1.0 means that
the solution is guaranteed to be optimal. The problems are numbered 1–7, which
corresponds to Java1, Java3, Java4, Cobol1–Cobol4.

5 Conclusions

Splitting a large software system into smaller and more manageable units has become
an important problem and a challenging task for many organizations. We were in-
troduced to this problem during the Study Group Mathematics with Industry 2005,
where it was presented by the Software Improvement Group (SIG). Apart from the in-
formation specific to the application, the basic structure of a software system is given
as a directed graph with vertices representing the programs of the system and arcs
representing calls from one program to another. The question of generating a good
partitioning into smaller modules becomes a minimization problem for the number of
programs being called by external programs.

During the one week of the study group and in the six weeks of continuing in-
vestigations afterwards, we were able to give a clear mathematical description of the
problem and to bring in some fresh ideas and new methods. We have presented two
different solution strategies, which both seem to be a suitable and valuable tool for
the intended applications. The formulations we gave reduce the problem to standard
problems in discrete optimization; this makes it possible to apply some state-of-the-art
software packages and to deal successfully with the real-world examples which were
provided by SIG.

Two different approaches turned out to be promising to tackle the problem. First,
we gave an equivalent formulation as an integer linear programming problem with 0–1
variables and used the software package CPLEX to implement this solution strategy.
Theoretically, with this approach the problem can be solved to optimality, but this

Partitioning a Call Graph 105

Figure 5: Permuted 158 × 158 adjacency matrix of the problem Java1. The
rows were permuted such that rows (programs) belonging to the same module were
brought together. Columns were permuted by the same permutation as the rows.
Each block of rows corresponds to a subset of the vertices, and hence to a module.
The number of modules is L = 8; the modules are shown by alternating coloring
in red (light) and blue (dark). The number of programs in each module is 22, 19,
20, 16, 21, 21, 18, 21, respectively. The permutation corresponds to a solution with
|I| = 30 interface programs produced by Mondriaan. Whether a program is an in-
terface program or not can be read from the columns. Columns corresponding to
interface programs are marked (above the matrix) and have at least one nonzero out-
side their diagonal block. Note that the solution method tries to confine all nonzeros
to the diagonal blocks. Where this fails, the method does not attempt to limit the
number of blocks involved; this explains the spread of the nonzeros over the differ-
ent blocks.

106 Proceedings of the 52nd European Study Group with Industry

becomes very costly with increasing size of the software system; obtaining efficient
reformulations and a clever implementation becomes an important task. We succeeded
to make this method work reasonably well for software systems of the size of the real-
world examples.

Second, we have formulated the problem as a hypergraph partitioning problem.
We have modified the package Mondriaan, recently developed at Utrecht University,
and applied this to the examples given by SIG. This second approach is a heuristic
method using a multilevel strategy, but it turns out to be very fast and to deliver solu-
tions that are close to optimal.

Our two methods can drastically reduce the fraction of interface programs, in par-
ticular for Cobol systems, where the resulting fraction is at most 5.1%. For small prob-
lems, we recommend using the integer linear programming method, perhaps speeding
up the solution process by starting with a heuristic solution produced by Mondriaan.
For large problems, with thousands of vertices in the call graph, multilevel hypergraph
partitioning such as done by Mondriaan is the only realistic option. Here, the per-
formance can be improved by fine-tuning, perhaps aided by experience with smaller
problems. Having knowledge of lower bounds or optimal solutions such as provided
by the ILP method for smaller problems can be of tremendous help in the fine-tuning.

The problem presenter SIG apparently appreciated the solutions proposed in this
report as well as the insight which they could gain from our investigations. Conversely,
we have profited from this well-prepared problem which led us to new interesting
questions such as for example the comparison between an exact and a heuristic method
in a realistic situation. We would be pleased if the strategies presented here would have
some impact on the applications and we hope that this collaboration stimulates further
joint work between mathematics and industry.

References
[1] T. N. Bui and C. Jones, “A heuristic for reducing fill-in in sparse matrix factoriza-

tion”, in Proceedings Sixth SIAM Conference on Parallel Processing for Scientific
Computing, pp. 445–452, SIAM, Philadelphia, 1993.

[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved Algorithms for Hyper-
graph Bipartitioning”, in: Proceedings Asia and South Pacific Design Automation
Conference, pp. 661–666, ACM Press, New York, 2000.

[3] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-Based Decomposi-
tion for Parallel Sparse-Matrix Vector Multiplication”, IEEE Transactions on Par-
allel and Distributed Systems, 10 (7), pp. 673–693 (1999).

[4] http://www.ilog.com/products/cplex/

[5] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
graphs”, Bell System Technical Journal, 49, pp. 291–307, (1970).

[6] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs NJ, 1982

[7] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.

Partitioning a Call Graph 107

[8] B. Vastenhouw and R. H. Bisseling: “A two-dimensional data distribution method
for parallel sparse matrix–vector multiplication”, SIAM Review, 47 (1), pp. 67–95
(2005).

[9] L. A. Wolsey, Integer Programming, Wiley, New York, 1998.

