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Abstract

In the central nervous system, alpha-motor neurons play a key role in the
chain that results in muscles producing force. A new non-invasive technique to
measure the electrical activity involved with force production called High Den-
sity Surface Electromyography (HDsEMG) has been proven to be effective in
providing novel clinical information on the way alpha-motor neurons control the
muscles. This is important for the monitoring of the progression of certain neu-
romuscular disorders such as polio. The result of HDsEMG is, however, very
difficult to interpret. In this paper we augment the usefulness of HDsEMG with
automated mathematical techniques to aid the Motor Unit Number Estimation
(MUNE) problem. Also, we create a stochastic model for the firing behavior of
an alpha-motor neuron.

1 Introduction
The movement of parts of the body is an area studied by many disciplines. Combining
the knowledge and techniques of multiple disciplines can help solve problems related
to movement in a more fruitful way. Here, we will combine medical science, neuro-
science and mathematics. First, we address two questions from medical science. Next
we describe the techniques used in neuroscience with which we collect the relevant
data. Finally, we describe the mathematics needed to process the data and reflect on
the questions posed in this introduction.

Movement requires force produced by muscles. Before the muscles contract a
chain of events take place. These events form the basis of the questions we will pose
later. For descriptive purposes we assume that the origin of movement is activity in
the brain (this is not the only starting point, eg. reflexes do not need intervention
from the brain). The brain sends out signals which consist of ‘spikes’ called action
potentials (see Figure 1); signals are built up of trains of action potentials. The brain
is part of the central nervous system which embodies all neural tissue in the body
including the spinal cord. From the brain, signals travel to the spinal cord. The spinal
cord can be divided into sections, called vertebrate discs, which are responsible for
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Figure 1: An action potential.

the control of a certain part of the body. The higher levels control the head and arms,
the lower levels control the torso and legs. Neurons branch off at every vertebrae. At
such a vertebrate disc in the spinal cord, the signal passes a number of intermediate
points called interneurons which act as a switchboard redirecting the signals to all the
further tissue that requires the information. The signals for movement reach their final
(neural) destination at neurons which control the muscles (of which the cell body also
lies in the vertebrate discs) called alpha-motor neurons (α-mn) (see Figure 2 (Left)
for the anatomy of this neuron). These neurons will be the focus of this report.

An α-mn controls a set of muscle fibers. The collection of the α-mn and the
fibers it innervates is called a motor unit. The number of fibers per motor unit varies
from 10 to 300 in different muscles. It is not known a priori how many motor units a
muscle has. To complicate matters, the fibers of different motor units are not neatly
bundled, but intermingle with fibers of other motor units (see Figure 2 (Right)). When
an α-mn fires, it produces a ‘twitch’ in the muscle fibers which is the result of electric
current moving across the muscle fiber membrane. This current can be measured as

Figure 2: Left: A neuron and its components. Right: Connections between the
Spinal cord, α-mns and muscle fibers.
© Post-Polio International.



Mathematical Techniques for Neuromuscular Analysis 111

Figure 3: (A) Normal situation: Two motor units each controlled by separate α-mns.
The fibers of the two motor units are intertwined. (B) Characteristics of a neurogenic
disorder: reduced number of MUs and increased MU size. (C) Characteristics of a
myogenic disorder: Decreased MU size. Eventually effective loss of MUs. Adapted
from [3]

will be discussed later. The α-mn fires with a certain frequency resulting in repeated
twitches of the fibers. The combined twitching of all fibers is what produces force and
movement. Normally, the individual twitches are not perceived, only when one exerts
a large amount of force can we see the effect of the underlying twitching mechanism.

We study two types of pathology which affect the distribution of fibers over the
motor neurons. In the first pathology, neurogenic disorders, certain α-mns die off.
Other neurons will take over the innervation of the ‘disconnected’ fibers. This causes
the motor units to grow in size (i.e. there are more fibers innervated by one α-mn).
The increase in size of motor units results in loss of ability to perform fine tasks. In
the second pathology, myogenic disorders, the muscle fibers die off. These fibers are
not regenerated. The result of the disorder is an increasingly weaker muscle. The
activity of the motor units decreases, resulting in an effective loss of motor units (see
Figure 3). Diagnosis of these disorders can be done by muscle biopsy. Monitoring
the progression and severity of the disorder is more difficult. Clinicians would benefit
greatly from having an accurate estimate of the number of motor units in a muscle.
This problem is know as Motor Unit Number Estimation (MUNE) and is the first
question of medical science we will address.

Question 1: How many motor units are active during a particular contraction?

The MUNE problem requires information generated by the muscle fibers. This
can be done by measuring the current that travels along the muscle fiber membrane.
An obvious problem in neuroscience is performing measurements on humans. This
problem is more pronounced when measuring force production and movement, sim-
ply because things move around. When one wants to measure signals produced by the
central nervous system and muscles there are many possibilities which can be divided
into two categories. The first category consists of invasive techniques. For exam-
ple, the recording of electrical signals produced by neural tissue with an electrode
on the tip of a needle. The second category, non-invasive measurement techniques,
uses sensors on the outside of the body, mainly on the skin. For many purposes inva-
sive techniques give more information as the sensor is exactly where the experimenter
wants it to be. However, invasive measurement is significantly more distressing to the
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Figure 4: High-density sEMG stetup. This setup records up to 130 channels at once.

participant of the experiment than non-invasive techniques. Also, because ethics pro-
hibit many invasive techniques many experimenters choose non-invasive techniques
to measure signals produced by the central nervous system and muscles. The data we
examine was obtained non-invasively.

A non-invasive technique which records muscle activity from the surface of the
skin is called surface electromyography (sEMG). A number of electrodes are placed
on the skin and the voltage difference between the electrodes and a reference elec-
trode is measured. This particular high-density setup can record up to 130 channels of
sEMG at once, as described in [11] (see also Figure 4). Muscle activity can be gen-
erated in two ways: voluntary or stimulated (the participant is given a small electric
shock which triggers the α-mns) which differ in a fundamental way. As mentioned
before, motor units differ in size, and not all motor units are active at each level of
force. The recruitment of the motor units during voluntary contractions is such that
the small motor units are recruited first and the larger motor units are added as more
force is required (i.e. small to large). This is called the size principle [6], and allows
one to control movement at different force levels. Also, during voluntary contractions,
the motor units are not triggered in unison; there are time delays between the individ-
ual firings. This property makes analysis of the data very hard as the time differences
are not known. This effect is not present when the muscle is stimulated. During stim-
ulated contractions, the motor units fire at the same time. However, they do not obey
the size principle. During stimulated contractions the motor units are recruited large
to small. This is not an issue as the larger motor units will generate higher levels of
sEMG and can be detected more easily.

The MUNE problem now comes down to extracting the number of components
in the total of 130 channels of sEMG. The mathematics for this extraction is based
on Principal Component Analysis (PCA). This technique is very common in signal
analysis, but will have to be modified to suit our purpose. To get reliable estimates,
we need to record muscle activity with similar content (i.e. the same motor units fir-
ing) many times. These recordings have delays which are unknown. To compensate,
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Figure 5: Neural drive from the central nervous system to the α-mn.

these delays, or shifts, will have to be estimated before we can use PCA. For the anal-
ysis we have say N recordings of 130 channels each. The high-density sEMG setup
gives topological information of the muscle activity. This topological aspect has to
be removed for the PCA. This is done by concatenating the information in the 130
channels of sEMG yielding N time series of which we still have to estimate the indi-
vidual time delays. The N recordings are made according to a protocol which starts
the first recording at a low stimulation level and continues the recordings with an in-
creasing stimulation level. This ensures the experimenter that the largest motor units
are present in almost all recordings and the smaller motor units become present in
recordings with increased stimulation. The mathematics of the estimation of the shifts
and the PCA are described in Section 2.

Question 2: How is the output frequency distribution of a motor unit determined
by the input frequency distribution?

The second question we want to address concerns the response of an α-mn (see
Figure 5). For this we derive a stochastic model based on certain assumptions of the
nature of the signal received by the α-mn. We assume the input of an α-mn to be a
Poisson process. Also, we will assume the time between action potentials arriving at
the α-mn to have a Poisson(λ) distribution. It is often observed that the input to the
muscle, and thus the output of the α-mn, has a characteristic frequency. Also, one can
observe activity in the brain having specific frequencies. Our goal is to gain insight
into the response of the α-mn to input of a known frequency.
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2 Determining principle components for data with un-
known shifts

Given a collection of data X ∈ Rm,n it is a common task to determine the principle
components. Typically we model measured data as having the form

Xij =
N∑

k=1

Cikvk(tj) + ηij (1)

where X, η ∈ Rm,n, C ∈ Rm,N and there are m times {tj} at which the signal was
sampled. That is, the n signals can be expressed as a linear combination of a small
collection of N (N � n) basis vectors and noise. In this problem we are interested in
determining the dimension N of the spanning set {vk}.

In the absence of noise this problem can be solved by decomposing the data onto
it’s singular values [5]; we find U ∈ Rm,m, V ∈ Rn,n, σ ∈ Rm such that

UT XV = [diag(σ)0n,m−n]. (2)

Additionally, U and V are orthogonal matrices and σi ≥ σi+1 ≥ 0. Of immediate
relevance is that if a matrix has rank N < n then σN+1 = . . . = σn = 0. In this
case there are precisely N principle components. Typically however real data is not
so clearly delineated with fuzzy measurements ensuring that σi > 0 ∀i. However,
the relative sizes of the principle values σi may still provide us with a great deal of
information. In particular if we define

Xk =
k∑

i=1

σiUiV
T
i

then σk+1 is the 2-norm of the distance of X to all matrices of rank k:

min
rank(Y )=k

‖X − Y ‖2 = ‖X −Xk‖2 = σk+1. (3)

Given a threshold ε this property can be used to define the ε-rank of a matrix, rε by
requiring that

σrε > ε ≥ σrε+1.

If we have a known order of magnitude for errors ε we can define a suitable rε. For
instance, if the entries of the matrix Xij are known relatively to within ±10−3 we
could determine the ε-rank of the matrix by finding the minimal rε such that σrε+1 <
10−3‖X‖2.

In the problem at hand we cannot directly apply these ideas as there are two distinct
sources of errors:

1. Experimental errors of unknown type and magnitude occurring on each channel.

2. Shifts of unknown magnitude occurring between all pairs of channels.

Errors of the first type are not dramatically troublesome and in the next section we will
discuss one algorithm for estimating the rank of a matrix in the presence of systematic
noise. The second type of error needs to be examined more carefully. Denoting
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X̂ij : measured data in the ith channel at time tj ,

si: time shift in the ith channel,

Xij : data in the ith channel at time tj + si,

ηij : noise in the ith channel measured at time tj .

Let us assume that
X̂ij = Xij + ηij

and that the unshifted data is spanned by N basis vectors

Xij =
N∑

k=1

Cikvk(tj)

then

X̂ij =
N∑

k=1

Cik

(
vk(tj) + siv

′
k(tj) +

s2
i

2
v′′k (tj) + . . .

)
(4)

'
N∑

k=1

Cik (vk(tj) + siv
′
k(tj)) (assuming small shifts)

=
N∑

k=1

Cikvk(tj) +
N∑

k=1

C̃ikṽk(tj) (5)

Generically the functions ṽk cannot be expressed as linear combinations of vk and
hence even without noise we would have doubled the rank of the matrix and the ap-
parent dimension of the spanning set. We will know consider a small experiment to
demonstrate these ideas.

Example 1 Consider four matrices of the form

Xij = αi sin(tj) + βi sin(2tj), i = 1, . . . , 10, tj ∈ [0, 5π]

X̃ij = Xij + εηij

X̂ij = αi sin(tj + si) + βi sin(2tj + si)
= αi(sin(tj) cos(si)+cos(tj) sin(si)) + βi(sin(2tj) cos(si)+cos(2tj) sin(si))

= α̃i sin(tj) + β̃i cos(tj) + δ̃i sin(2tj) + γ̃i cos(2tj)

X̄ij = X̂ij + εηij

where αi, βi, si and ηij are randomly chosen in [−1, 1] and ε = 10−3. In this example
we have that N = 2 and n = 10. In Figure 6 we present a sample signal with and
without shifts and noise and also the singular values.

From this example we find that we cannot simply use the singular value decom-
position – even with a known threshold – to estimate the dimension of the spanning
set for the shifted noisy data. To determine the number of principle components for
the given data we now proceed in two steps: first we estimate upper and lower bounds
for N , Nu and Nl; then we search for the shifts assuming that we know the correct
dimension.
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Figure 6: Example 1. Top: Sample signals from one channel showing a typical shift
and small noise. Bottom: The singular values for the data with no noise fall off to
σi = 10−40 after N = 2 and N = 4 for the un-shifted and shifted data respectively.
In this example the addition of the noise determines a clear ε-rank, but the shifts
double the estimate for the number of principle components.

2.1 The number of principle components

We begin by modelling our data by (1). To estimate the dimension of the spanning
set we follow the philosophy of [2] and the algorithm of [8] who advocate a Bayesian
approach. While the full details of the method are beyond the scope of this report, we
will briefly describe the methodology.

The model is that in each channel the signal is generated from a small N -dimen-
sional vector w via a linear transformation and an error term:

Xi =
N∑

k=1

Cikwk + m̄i + ηi (6)

with 〈Ci〉 = 0, i.e. 〈Xi〉 = m̄i. Critically it is assumed that both the noise vectors
ηi and the principle component vectors Ci are sampled from spherical Gaussians (i.e.
are normally distributed). Note that here we are implicitly assuming that the noise in
each channel is of the same magnitude and is thus additive. By construction, each
sample Xi is also taken to be Gaussian. For given model parameters C, m̄ and v this
distribution takes the explicit form

P (X|C, m̄, v) =
1

(2π)Nm/2

∣∣CCT + vI
∣∣−N/2

exp
(
−1

2
tr(CCT + vI)−1S

)
(7)

where S is the co-variance matrix Sij = (Xi− m̄i) · (Xj − m̄j), and v is the variance
of the noise assumed to be constant over all channels.

The evidence that the data fits the model with specific parameters can now be
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determined by integrating over the parameter space

P (X|M) =
∫

θ

P (X|θ)P (θ|M) dθ (8)

The model parameters which best fit the data with the highest probability are those
which maximize this integral. The first difficult part is to find a parametrization of the
family of matrices C in (7) such that the integral in (8) may be evaluated. In practice,
it turns out that once this has been done the integral cannot be computed exactly but
is instead approximated with Laplace’s method [8]. Limiting the dimension of the
spanning set to k we have that the evidence that our data X is of the form (6) with
C ∈ Rk,n is [8]

P (X|k) = ck

∫ ∣∣CCT + vI
∣∣−N/2

exp
(
−1

2
tr(CCT + vI)−1S

)
dU dL dv (9)

where C = U(L− vI)1/2R, UT U = I , RT R = I and ck is a known function of n, k
and m. The most probable dimension, Ñ , is such that

P (X|Ñ) = max
k

P (X|k). (10)

The recent paper [8] compares several approximations to (9) and algorithms for de-
termining the number of principle components. Based on multiple numerical tests the
author asserts that Laplaces’ approximation to (9) is both the least computationally
intensive and the most reliable. An algorithm to determine the most likely dimension
is to find Ñ satisfying (10) with P (X|Ñ) approximated by Laplace’s method (see [8]
for details).

To determine the upper bound Nu we simply apply this algorithm and, based on
the observation in (5), take Nu = N/2. Unfortunately this estimate is not sharp as
the effects of real noise (i.e. with different magnitudes and variances) tend to lead to
an over estimation for N . Also, it is not clear which terms in the expansion will be
recognized as signal rather than noise.

To compute the lower bound Nl we recall (4). We will assume that the shifts are
small and hence that Cik � C̃ik. To find Nl we mask the effect of the shifts by am-
plifying the noise. We find a threshold ε such that Yi = X ′

i + εηi is indistinguishable
from noise. In terms of the above algorithm this means N(ε) = 1 ∀δ ≥ ε. We now
have a way to artificially add noise to hide the effects of the shifts, i.e. compute

Nl = N(X̂ + εη) (11)

(In practice, this threshold may be too large. We will leave it’s proper determination
for later work.) One drawback of this approach is that it can under-predict Nl if some
signals are much weaker than the others and as such can easily be drowned out by
the added noise. One possible correction for this is to rescale all the signals before
starting. While this rescaling does affect the particular singular values it in no way
changes the shifts or the correct dimension of the spanning set.

Given the interval [Nl, Nu] we now choose N ∈ [Nl, Nu] and try to find the shifts
assuming N .
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2.2 Functional optimization
Given the geometry of the singular value decomposition we would like to choose the
shifts to minimize σN+1. This maximizes the ε-rank of the matrix.

However, in practice this problem seems to be highly degenerate and difficult to
solve. Instead we have chosen to consider

V = −
∑N

i=1 σi∑n
i=1 σi

= −
N∑

i=1

σi (by normalization). (12)

If the singular values are decaying quickly for i > N then

−
N∑

i=1

σi ' −
n∑

i=1

σi + σN+1 ' −1 + σN+1

and in many cases the minimization of (12) is a good approximation of minimizing
σN+1.

We have tested three approaches to minimize the functional (12) with respect to
the shifts.

A1. A pseudo-Newton method to find a zero of∇V using minunc in the Optimiza-
tion Toolbox for Matlab.

A2. A gradient flow of V with respect to an artificial time with computation of

dsi

dt
= −∂V

∂si

using the code ode113 in Matlab.

A3. Direct search using the Matlab routine fminsearch.

The results of algorithms A1 and A2 are almost identical but with A2 taking ap-
proximately ten times longer to terminate. The results of A3 are less satisfactory and
take approximately ten times longer than A2.

Each step in all three algorithms requires both interpolation and the computation
of singular values. Because the interpolation is being done onto a uniform grid cubic
interpolation takes the form

Xi(tj +s) = α−1(s)Xi(tj−1)+α0(s)Xi(tj)+α+1(s)Xi(tj+1)+α+2(s)Xi(tj+2),

for s ∈ [0, 1]. Here the αi are cubic polynomials in s. This is a cheap operation taking
only O(mn) operations.

In each algorithm, we approximate the gradient as

∂V

∂si
' V (s + ∆sei)− V (s)

∆s

Here ei is the unit vector in the i−th direction and ∆s =
√

ε ' 10−8. Thus at
each step we need to compute n singular value decompositions (s1 ≡ 0) for a total
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of O(mn3) operations. Occasionally A1 also needs to compute the Hessian which
requires O(mn4) operations.

A3 is the cheapest per step but takes by far the most steps. A1 is the best as at step
n + 1 ∥∥∥∥∂V (n+1)

∂s

∥∥∥∥ ' C

(
∂V (n)

∂s

)p

, C1 > 0, p > 1.

Whereas for A2 we can expect no better than∥∥∥∥ds

dt

∥∥∥∥ =
∥∥∥∥∂V

∂s

∥∥∥∥ ' C2e
−C3t as t →∞ C2, C3 > 0.

In order to reduce the number of function evaluations we use a high-order predictor
corrector code but then the step sizes are limited by stability as t →∞. It is possible
that hybrid method first using an explicit code and then an implicit one would make
A2 competitive with A1.

2.3 A test for determining N

The minimization routine is run for the sequence of N ∈ [Nl, Nu]. Unfortunately
there are still numerous problems preventing us from simply applying the evidence
algorithm to determine the number of principle components. These include

1. The noise in the data does not strictly follow the model: it is not necessarily
normally distributed, the variance varies between channels.

2. The shifts have not been completely eliminated.

3. There are small interpolation errors.

4. The minimization problem introduces additional numerical errors.

5. A mixture of signals of vastly different magnitudes in each channel. This makes
some signals difficult to distinguish from noise and, more importantly, the ef-
fects of shifts in large signals can be on the same order of magnitude as some
weak signals.

Ideally, we would like a nice obvious step from large singular values to small ones
(as in Example 1) allowing for a clear ε-rank. Unfortunately, this combination of
difficulties makes determining such an ε impossible. Instead, we solve for all N ∈
[Nl, Nu] and then set

Nr such that
σNr

σNr+1
= max

k

σk

σk+1
(13)

for each run. Then we take Ñ to be that which maximizes this ratio. Conceptually this
approach finds the dimension such that there is a clear step from “large” components
to “small” ones. But, it does not preclude the possibility that the data in each channel
comprises one very large signal and several much smaller ones. In that case, for the
reasons stated above, it may be very difficult to distinguish the small signals from
noise as the shifts amplify the classic signal vs. noise problem.
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Figure 7: Artificial data. Top: Complete signals in all channels. Bottom left: De-
tail of unshifted data. Bottom right: Detail of shifted data. After optimization the
original and output data are essentially indistinguishable.

N Nr σNr/σNr+1 Run time (s)
6 6 125 47
5 5 98 45
4 4 2731 33
3 4 113 39
2 4 31 31

Table 1: Results from running the algorithm with given data. From this we would
correctly conclude that there are four principle components.

2.4 Example

To recap, the entire algorithm is

1. Determine Nu with (10).

2. Numerically find X ′ and find ε such that X ′+εη is indistinguishable from pure
noise.

3. Determine the Nl as the dimensionality of X + εη.

4. Solve the optimization problem for N = Nl, Nl + 1, . . . Nu.

We now consider a test on the artificially generated data as in Figure 7. This is
“simulated” data from one of our industrial collaborators. We begin with initially
unshifted data to allow us to test the reliability of the algorithm. The results are sum-
marized in Table 1.
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2.5 Conclusions
This algorithm has been shown to be effective in reducing the effects of shifts in data
to give a reliable estimate of the number of principle components. However, two areas
for improvement remain. Firstly, no information about the structure of the signals has
been incorporated and we leave this as an avenue for further work. Secondly, when
optimizing with N greater than the number of true principle components the signals
falsely seperate so as to fill all available spanning dimensions. This problem is easily
remedied should it be required when dealing with real data.

The question we have looked at in this Section has two components. Firstly, how
can we remove the shifts? Then, how do we determine the number of principle com-
ponents? We believe that we can more reliably deal with the first question. This is
not surprising as the second is a long-standing research question and not completely
resolved in many practical application areas.

After the preparation of this report we were furnished with “real” data with which
to work. Preliminary tests suggests that this approach works but that the ODE gradi-
ent flow approach may be more appropriate. We leave this as a direction for further
research.

3 Discrete integrate and fire neurons
The second question posed was to model the frequency response of a motor unit.
Clinical scientists are interested in an explanation of the 40 Hz components that are
measured in sEMG, both at the brain and the muscles. We did not have sufficient
information to answer this specific question, but have made a simple model that com-
bines features of other, existing models, and may help to foster insight in the frequency
response.

We present a simple, phenomenological, discrete model with which the average
firing time or the length of the inter-spike intervals of neurons can be estimated, given
a basic exponential potential function F0(t) and a series of incoming signals gi(t)
from the brain. We choose a particular F0(t), but the discrete approach in this section
can be applied to any function F0(t). Our potential F0(t) varies between its minimum
F0 and its saturation state F0 + α, and is assumed to be exponential:

F0(t) = F0 + α(1− e−βt) (14)

with α, β > 0. The potential is then reset to the minimum F0 after the neuron has
fired. During an inter-spike interval, i.e. as long as no firing has occurred, the potential
increases monotonically.

The neuron fires if its total potential F (t), that is a sum

F (t) = F0(t) +
∑

i

gi(t) (15)

of its own basic potential F0(t) and the incoming signals gi(t), reaches a certain
threshold value θ.

The incoming signals gi(t) are in fact very short pulses, but they are often mod-
eled as exponentials, as block-functions, or, since they should add up to build up the
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Figure 8: Blocks of length 1 arrive at arrival times ti. Here 10 blocks have arrived
within the time interval [T, T + 1].

potential F (t), their derivatives are assumed to be delta-functions [4]. If the incoming
signals gi(t) are modeled by dg

dt = δ(t − ti), so as block functions that have value
gi(t) = 0 for all t < ti and gi(t) = 1 for all t > ti, they get an infinite length. There
is a major drawback of this simplest assumption one can think of, since this way they
all add up to build up the potential, whereas in real neurons the potential decreases
as well. We therefore want our model to allow for a drop in the potential F (t) if the
incoming signals g(ti) are too far apart. Our approach is, to model the gi(t) by block
functions, all of equal length and height. This form is of course still far from the real
pulse form of the signals, but is similar to the approximation mentioned above. If a
stack of these blocks reaches the threshold θ within a certain time interval (that we
scale to 1), the neuron will fire. If the threshold is not reached within this time inter-
val, the total stack will decrease, and new incoming signals will start and build up a
new stack (see Figures 8 and 9).

In fact, this model combines two features of the neuron system that have been im-
plemented separately before. As far as we know there are no existing models in which
both are combined. Other models either use a constant function F0(t), which means in
physiological terminology that no leaky dynamics are taken into account, or they use
a function F0(t) with leaky part and use infinite-length gi(t)-functions. If a constant
F0(t) is chosen, then it is combined with the same infinite-length gi(t)-functions or
with more natural forms for gi(t), such as the above mentioned exponentials or simple
pulse functions.

3.1 Stochastics

A standard assumption on the incoming signals gi(t) is that the arrival times ti are
distributed as a Poisson process. In other words, the time intervals Xi = ti − ti−1 are
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random variables that are Poisson distributed, i.e. they satisfy

P (Xi > x) = e−λx (16)

for a positive parameter λ. For well-known results, see for instance [10].
If the interval lengths Xi satisfy the distribution (16), then the probability that

there will be n arrival times ti within any time interval of length 1 is equal to the the
probability that there will be n arrival times ti within the interval [0, 1]. With N the
number of arrival times within [0, 1], this probability is P (N = n) = λn

n! e
−λ. If the

incoming blocks have length 1 and height 1, the probability that they will together at
least reach an integer height h within a time interval of length 1 will thus be P (N ≥
h) = 1 − P (N ≤ h − 1). The expected number of arrival times (expectation value)
within an interval of length 1 is λ, with variance λ.

This is illustrated in Figure 8. There 10 blocks of length 1 and equal height
have arrived within the time interval [T, T + 1], and the threshold θ = 10 is thus
reached. The probability that exactly 10 blocks would have arrived within this in-
terval is P (N = 10) = λ10

10! e
−λ; the probability that at least 10 blocks would have

arrived within this interval is P (N ≥ 10) =
∑

k≥10
λk

k! e
−λ.

The next step is to let the stack fall down and start a new one, if the stack has
not reached the threshold height θ within the time interval [T, T + 1]. In modeling the
function F (t) (15), we impose that the level at which the stack in an interval [T, T +1]
starts to build up equals F0(T ), with F0(t) given by (14) as shown in Figure 9. This
means that if the stack does not reach the threshold θ within [T, T + 1], it will fall
down to F0(T + 1). If the stack has reached the threshold value within an interval
[T, T + 1], the neuron fires, the stack falls down, and the time t is reset to t = 0, so
that the potential starts to build up from F0(0) again. To simplify the calculations, we
let the neuron fire at the end of the interval, at t = T + 1.

3.2 Expectation value and variance of firing time

The above ingredients are sufficient to calculate the expectation value and variance of
the firing time in this model. We take blocks of height 1 (notice that the scaling of the
horizontal and vertical axes in Figures 8 and 9 is different).

Define pn as the probability that the neuron fires in (or by the above assumption,
at the end of) the interval [n, n + 1]. Then

pn = P (N ≥ θ − F (n)) = P (N ≥ dθ − F (n)e) =∑
k≥dθ−F (n)e

λk

k!
e−λ = 1−

bθ−F (n)c∑
k=0

λk

k!
e−λ.

(17)

Here we used the notations dxe, which means the first integer larger than x, and bxc,
which means the first integer smaller than x. They play a role, since θ − F (n) need
not be an integer.

Now define the stochast Y as the firing time. Define fn as the probability that the
neuron has not fired at or before t = n, and does fire in the interval [n, n + 1], or
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θ

1 2 3 4

F0 + α

F0 = F0(0)

F0(3)
F0(2)

F0(1)

5=0’ 6=1’ 7=2’0

F (t) (mV)

t (msec)

Figure 9: Stacks are being built up within intervals [T, T + 1]. If a stack has not
reached θ at t = T + 1 it falls down at t = T + 1, and the next block arrives at
height F0(T + 1). If the stack has θ at t = T + 1, the neuron fires (not shown), the
stack falls down, the time t is reset (t = 5 = 0′), and the next block arrives at height
F0(0

′) = F0(0) again.

better, at t = n + 1. Then

fn = P (Y = n + 1) = (1− p0) . . . (1− pn−1)pn = pn

n−1∏
j=0

(1− pj). (18)

The expectation value for the firing time can now be calculated as

E(Y ) = 1.P (Y = 1) + 2.P (Y = 2) + 3.P (Y = 3) + . . .

=
∞∑

l=1

fl−1l =
∞∑

l=1

pl−1l

l−2∏
j=0

(1− pj).

With en := dθ − F (n)e, this equals

E(Y ) =
∞∑

l=1

l
∑

k≥el−1

λk

k!
e−λ

l−2∏
j=0

(
ej−1∑
k=1

λk

k!
e−λ). (19)

The variance in the expected firing time is V ar(Y ) = E(Y 2)−E(Y )2, where E(Y 2)
is the so-called second moment

E(Y 2) = 12.P (Y = 1) + 22.P (Y = 2) + 32.P (Y = 3) + . . .

=
∞∑

l=1

fl−1l
2 =

∞∑
l=1

pl−1l
2

l−2∏
j=0

(1− pj),
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which equals

E(Y 2) =
∞∑

l=1

l2
∑

k≥el−1

λk

k!
e−λ

l−2∏
j=0

(
ej−1∑
k=1

λk

k!
e−λ). (20)

The nth moment is likewise given by

E(Y n) =
∞∑

l=1

ln
∑

k≥el−1

λk

k!
e−λ

l−2∏
j=0

(
ej−1∑
k=1

λk

k!
e−λ). (21)

3.3 Calculations

If the parameters F0, α, θ and λ are chosen, the expected firing time and corresponding
variance can be calculated from (19) and (20). The first three parameters vary for
different types of neurons, and we will choose various values in our calculations. The
parameter λ however is strongly related to the time-separation between the incoming
pulses gi(t), since λ is the expected number of arrival times within an interval of
length 1. We know that the pulses arrive with a frequency of about 10.000 Hz, so
if we rescale our time t so that each interval of length 1 is an interval of 1 ms, the
parameter λ should be set to λ = 10.

We calculated the expected firing time and variance for this model, with different
(more or less realistic) values for F0, α, β and θ. In [7] we find typical values for
an α-motor neuron: the minimum F0 of F0(t) is about F0 = −75, the difference α
between the minumum of F (t) and its saturation value is about α = 5, and the firing
threshold θ is about θ = −55. These values are all given in mV. In the standard book
[1] we find values for other types of motor units as well; examples are F0 = −65,
α = 10 or 15, and θ = −50 or −45 (but of course always with α < θ − F0). The
parameter β is related to the saturation time of F0(t), which is typically 75 [7] to 100
ms We assume that F0(t) has reached the saturation value F0 + α if it is less than
1% off this value, so if 1 − e−βt ≤ 0.01. This means that realistic values for β are
for instance β = 0.05 or β = 0.06. The results of some calculations are listed in the
Table 2.

To interpret these values, it is useful to realize that an expected firing time E(Y ) =
τ ms corresponds to an expected firing frequency of 1000/τ Hz. The last column in
the table depicts the corresponding expected frequency (in Hz) in each of the calcu-
lated cases.

As realistic firing frequencies are between 8 and 20 Hz (15 Hz for an α-motor
neuron) [1, 9], we conclude that for low threshold values and rather short saturation
time (β = 0.1, i.e., a saturation time of about 46 ms according to the 1%-rule above)
the model predicts firing frequencies that are far too high. However, for higher thresh-
old values and a somewhat longer saturation time (β = 0.06, 77 ms; or β = 0.05, 92
ms), the predicted values for α = 5 are very reasonable. For α = 10, the predicted
frequencies are (much) higher than for α = 5.

Note, that for the calculations only the difference θ − F0 matters, and not the
separate values F0 and θ. This explains why the first and second set contain similar
rows. We only computed the first and second moments E(Y ) and E(Y 2) for every
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F0 λ α β θ E(Y ) E(Y 2) V ar(Y ) σ(Y ) E(freq)
-65 10 5 0.1 -50 9.06 108.7 26.7 5.16 110
-65 10 5 0.1 -45 48.33 3693 1357 36.8 21
-65 10 5 0.06 -45 54.4 4374 1410 37.55 18
-65 10 5 0.05 -45 55.7 4504 1404 37.47 18
-65 10 10 0.1 -45 15.4 267.5 31.9 5.65 65
-65 10 10 0.06 -45 20.6 482.6 57.6 7.59 49
-65 10 10 0.05 -45 23.2 609.1 71.5 8.46 43
-75 10 5 0.1 -65 2.28 7.51 2.30 1.52 438
-75 10 5 0.1 -60 9.06 108.7 26.7 5.16 110
-75 10 5 0.06 -60 10.6 153.5 41.7 6.46 94
-75 10 5 0.1 -55 48.33 3693 1357 36.8 21
-75 10 5 0.063 -55 53.8 4297 1404 37.47 19
-75 10 5 0.06 -55 54.4 4374 1410 37.55 18

Table 2: Results of the calculations for various values of the parameters.

choice of the parameters, but if one is interested, higher moments can be computed
along the same lines, using formula (21).

3.4 Conclusions

Although it is very simple and only of a phenomenological nature, the discrete model
we presented is capable of producing realistic values for the expected firing time and
frequency.

By its discrete nature, the model can easily be changed without destroying the
global, simple framework. If one wishes, it can for instance be adapted to fit better
with clinical data or to mimic other models, by changing the basic potential F0(t), the
length of the “building-up period” or the value of λ.

These are two reasons why the model may serve as an additional tool to study the
relation between input and output frequencies in motor units.
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