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1. Introduction

Lossless compression of audio signals is an active area of research,
which already has a wide range of practical applications such as Compact
Disks (CD’s) and Digital Versatile Disks (DVD’s). The problem posed
to the Study Group by the Philips Research Laboratories comprised
two different goals. Firstly, Philips is interested in the highest possi-
ble compression ratio which can be achieved without, more or less, any
restriction to the complexity of algorithms, computing power required,
etc. Thus the first part of the problem has a predominantly theoretical
flavor. It should indicate the limits of compression techniques for audio
data in the form of binary sequences. The second part of the problem
is more practical. It concerns the evaluation of the current compression
technique described in [5, 6]. An interesting question here is whether
the proposed algorithm is optimal in some sense, and whether any im-
provements are possible.

There is one important practical aspect to keep in mind. If a new
superior compression algorithm is proposed within the class of models,
currently accepted and implemented as hardware (encoders/decoders),
and one would like to implement this algorithm, then only a relatively
small number of encoders should be upgraded. The ‘old’ decoders (such
as CD players) would still be capable of reproducing the audio signal.

Philips supplied us with 4 generic audio sequences and with the
corresponding compression ratios achieved by their coding techniques.
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We will refer to these samples as samples A, B, C and D. The first sample
A is considered to be ‘easy’, the last sequence D is considered to be
‘difficult’. The remaining sequences B and C are of average complexity.
The efficiency of the compression algorithm is measured by its gain R,

length of the original sequence in bits

- length of the compressed sequence in bits’

For reference, the Philips algorithm achieves compression gains of around
3 for sample A, 2.4-2.6 for samples B and C respectively, and 2.2 for
sample D.

This paper is organised in the following way. In section 2, we describe
a general approach to data compression based on statistical modelling.
We also describe in more detail the algorithm proposed by Philips, and
formulate the criterion for the optimal predictor within the class of linear
predictors. In section 3 we discuss the efficiency of the current linear
predictor. We discuss ways of improving Markov predictors in section 4.
In section 5, we propose ways of improving the current linear predictor.
Especially schemes based on weighted least squares seem to be very
promising.

2. Statistical modelling and prediction

A large number of compression methods is known and used in prac-
tice. These include among others well-known algorithms such as Lempel-
Ziv, Huffman, or arithmetic coding. We will refer to this type of com-
pression techniques as entropy coding. Given a binary sequence of length
N, an efficient entropy coder will produce an output of approximately
Nh bits, where h is the entropy given by

h = —plogyp — (1 — p) logy(1 — p),

where p is the probability of observing a 0 in the source sequence. From
this we can see that binary sequences in which one symbol occurs more
often than the other — 0 say, and hence p > 1 — p — will be compressed
efficiently.

It is known, however, that applying entropy coding to audio signals
is not very efficient due to the presence of long-time correlations in the
signal. These should be exploited in order to gain efficiency. Therefore,
a preprocessing step is required, which eliminates the statistical depen-
dencies, and leads to an almost uncorrelated source with one dominating
symbol. Then standard entropy coding techniques can successfully be
applied.

Suppose {z;}, i = 1,...,N, is a binary sequence we want to com-
press. A typical approach to the development of such a preprocessing
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stage would be the design of a scheme that tries to predict the next
symbol of the sequence based on k previous symbols

(16) ii'n :F(.’L'n_l,... ,CL‘n,k).

Next we define a new sequence {y;} as follows. If the prediction is
successful, i.e. z, = Z,, then we let y, = 0, otherwise y, = 1. It is
also clear that given the parameters of the predictor F', the first & bits
(1,...,2k), and the values {y;}, i =k +1,... ,N, we can reconstruct
the original sequence, {z;}, i =k+1,... ,N. In practice, we would like
to have N much larger than k.

If we would be able to design a predictor F' which makes only very
few mistakes, then 0 will be a dominating symbol in the sequence {y;},
and we should expect a good compression gain for this sequence by
entropy coding. At the same time, the decoder must be supplied with
the parameters of the predictor F. We will refer to the storage space
in bits, required for these parameters, as the overhead. Clearly, the
overhead should not be too large. The gain of such a coding scheme is

_length of the original sequence
~ overhead +k + (N — k)hy ’

where hy is the entropy of the sequence {y;}. Hence, in this setup,
the problem of efficient audio compression is reduced to the design of
a prediction scheme with a minimal value of overhead + Nhy. Here we
used our assumption that £ is much smaller than N.

When designing the prediction scheme for a sequence {z;}, i =
1,..., N, we are allowed to use the whole sequence. For example, even
an uncompressed piece of music of just a few minutes long takes up sev-
eral GigaBits of storage space. Hence, N can be quite large. On the
other hand, we would like to be able to start decoding (playing music)
from a more or less arbitrary position. So in practice predictors are de-
signed for much shorter sequences (frames) of length N = 40000. In this
way possible problems arising from the non-stationarity of the audio sig-
nal are avoided; we can expect a single predictor to perform reasonably
well on the whole frame.

2.1. Markov predictors. Let £ € N be the length of words on
which the prediction will be based. The state space of our Markov chain
is the set S®) = {—1,1}% ~ {1,...,2%} of words of length k on a two-
symbol alphabet!.

11n this paper we are dealing with binary data. Everywhere below we will be using equiv-
alent representations of the data in alphabets {0,1} and {-1,1} freely, without announcing it
explicitly. In every case, however, it will be clear which representation we are using.
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The Markov chain will make transitions between a word m = z1 - - -z,
and the words 7t = xo--- k1 for 4.1 = +1. Figure 1 shows the
graph of the Markov chain for & = 3.

Each edge of the graph will be assigned the empirical transition
probability measured from the data set. Namely for each word # =
T1-- T, we compute
Uk (m) = number of times the word z; - - - 2y, +1 is found in the data ,

D®) (1) = number of times the word z - - - zj, —1 is found in the data .
The empirical transition probabilities are given by
Uk (1)
U® (x) + DB () °
P (7T — 7'('_) = 1-pW (7r — 7r+) .

8 (x = %) =
a7 P (1 — )

These probabilities are not needed in practice, we only provide them for
a complete definition of the Markov chain.

The Markov predictor of order k, Z, = p¥) () on the word = =
Tp_k - Tn—1 is defined by

ﬁmm:{ﬂ,ﬁwmﬂszm,

(18) ~1, if UM(r) < DE)(x) .

Hence, in this way we predict the most probable symbol to follow 7.
The overhead of the Markov predictor is 2% bits. Hence, practical
application of Markov predictors is feasible only for relatively small ’s.

2.2. Linear predictors. Linear prediction is amongst the most
successful tools in signal processing. In data compression, schemes based
on linear prediction show good compression gains for various data types,
e.g. speech. Linear predictors, in general, are trying to predict the next
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observation by a linear combination of several previous values:

Zn = Bo + Brxp—1 + Botpn_2+ ... + BrTn—i,

Since we are dealing with binary data, z,, € {—1,1}, a natural way to
incorporate this into our predictor is to consider the following predictors

Tn = sign(ﬂg + B1%Tn—1+ Boxp2+ ...+ ﬂkﬂvn—k),

where sign(z) = 1 for z > 0, and —1 otherwise.

The design of an optimal linear predictor hence consists of the se-
lection of a vector of parameters 8 = (o, ... , ;) € R¥t! in a such way
that the number of instances where z, # Z, is minimal. The overhead
of a linear predictor is (k+ 1) M, where M is the number of bits used to
represent a real number. Hence, the overhead is growing only linearly
with k. This is a great advantage of linear predictors over Markov pre-
dictors, and allows them to go to much higher values of k. It is also
clear that for the same order k, Markov predictors are at least as good
as linear predictors.

2.2.1. Philips predictor. In [5, 6], a linear predictor of the following
form has been used

(19) &n = sign(Brzn_1 + Patn_2 + ... + Brn_i),

where the coefficients (1,...,0; have been selected to minimize the
following expression

N
2 .
(20) E |2n — (Bi&n—1 + Ban—2 + ... + BeTn_)|” — min.
n=k+1

The problem (20) is a standard least squares problem, which admits an
efficient practical solution. This simple approach produces a predictor
of a remarkable quality. An optimal value of the order k for such a
linear predictor has also been investigated in [5, 6]. In fact, optimal
k may vary and depends on a particular frame, but typically £ = 128
gives good results. Increasing k does lead to a better predictor, but the
corresponding growth of the overhead is not compensated by the gain
in the quality of the prediction.

2.2.2. Optimal linear predictor. In fact, solving problem (20) gives
only an approximation of the optimal linear predictor. An optimal pre-
dictor minimizes the number of errors, i.e. instances when x, # Z,.
We can reformulate the criterion for the optimal predictor (19) in the
following way: coefficients (f1,...,5,) of the optimal linear predictor
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are such that in the system of inequalities

Brixk12k + Boxpt1Zp—1+ .. +PkTr4121 >0

BrenTn—1 + PexNTN—2 + ... +OrTNTN_> 0

the number of valid inequalities is mazimal.

Let us denote by A the matrix with elements z,z,—j, n = k +
1,...,N,j=1,...,k. Hence the problem of finding the optimal linear
predictor is equivalent to finding a vector 8 such that a vector Af has
a maximal number of positive coordinates.

In general, for a given matrix A it is quite easy to check whether there
exists a vector 8 such that all the coordinates of AS are positive. If such a
vector exists, then we say that A defines a feasible system of inequalities.
This is a best possible case, because the corresponding linear predictor
will not make a single error. To check whether A is indeed feasible, we
can use standard methods of Linear Programming, which give an answer
in polynomial time. However, one should not expect that the matrix A
obtained from the data will lead to a feasible system of inequalities. The
problem of finding the optimal linear predictor then is equivalent to the
problem of finding the maximal feasible subsystem, i.e. a matrix A’
made out of rows of A, which has maximal dimension and still gives a
feasible system of inequalities. This problem is known to be NP hard,
but also there is no polynomial approximation, see [1, 2]. However, there
are several heuristic methods, which are known to perform relatively
well. Unfortunately, we were not able to pursue this idea further. In
the next section however, we will discuss briefly how close the linear
predictor, given by (20), is to the optimal linear predictor.

3. Comparing predictors

In the previous section we have seen that the Philips predictor is, in
principle, different from the optimal linear predictor. Nevertheless, the
Philips predictor performs remarkably well: on average, 1 error for every
10 predictions made. This suggests that maybe the Philips predictor is
not that far away from the optimal one. However, as was mentioned
above, design of an optimal predictor is a known NP hard problem. On
the other hand, we can try to compare Philips predictor with a Markov
predictor.

For every pattern, the linear predictor makes at least as many mis-
takes as the Markov predictor. If it makes more, these extra errors are
a measure for the quality of our predictor. We can calculate these num-
bers for our data. We should not make k too large; then almost every
pattern would only occur once at most, and the Markov predictor would
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make no errors. This is not what we want; for each pattern, we should
have a reasonable number of occurrences, or none.

It is useful to develop some terminology for these errors: we say a k-
bit linear predictor makes a ‘Type I’ (or unavoidable) error if it makes an
error, but agrees with the Markov prediction. In that case, the predictor
can not be improved by repairing this error. For example, if our data
contains a pattern of k bits, which appears twice, once followed by 0 and
1 at the second instance, then the Markov (and hence, linear) predictor
will make an error. If the predictor makes an error, while the Markov
predictor is correct, we call this a ‘Type II’ (or avoidable) error. This
error may be due to the linearity of the predictor, or it may be that we
have not found the best linear predictor. We will not try to distinguish
between these cases. If we find a type Il error, we can, in principle,
improve our predictor. However, this could mean we have to leave the
class of linear models, which might not be a desirable solution from a
practical point of view.

Predictor length No. of errors Unavoidable Avoidable
(type 1) (type 2)

7 6301 6301 0
30 5660 3070 2590
90 4328 0 4328

128 3764 0 3764

FI1GURE 2. The Philips predictor applied to the first frame of
sample A (frame size is 37632 bits)

Table 2 suggests that the Philips predictor is indeed optimal for small
k. As expected, for large k the Markov predictor will not make any mis-
take. This, however, has no practical value. On the other hand, compar-
ison between linear and Markov predictors is not really fair. It would be
more interesting to define Type I and Type II errors for the class of linear
predictors. For example, if our data contains 1,...,1 and —1,...,—1
(both k times), followed by 1, then any linear predictor is bound to make
a mistake. The precise identification of avoidable/unavoidable mistakes
seems to be out of reach at the moment.

4. Improving the Markov predictor

We have seen earlier that Markov predictors of high order have su-
perior quality. At the same time, huge overhead (2* bits) makes them
unpractical. In this section we consider two attempts to produce pre-
dictors of comparable quality, but with smaller overheads.



28 2. ON LOSSLESS COMPRESSION OF 1-BIT AUDIO SIGNALS

5000

4000

3000

2000

1000

1 2 3 a s 6 7 8 o 10 11 12 13 1a s 16

FIGURE 3. Word counts U® and D® computed for sample A
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FIGURE 4. Word counts U(") and D(") computed for sample A

4.1. Adaptive Markov Predictor. For each word 7, the number
of correct predictions will be max(U®)(r), D) (r)), see (18). Conse-
quently the total number of incorrect predictions is

Z e(m) = Z min(U(k)(W),D(k)(ﬁ)).

weS k) weSk)

As shown in Figures 3 and 4, most of those errors are typically due to
just a few words. An adaptive Markov scheme can be designed in the
following way:

: 1) Construct the Markov predictor of order k (see (18)).

: 2) Sort the 2% elements of S (k) by the number of errors they account
for, that is number the words m(1),7(2),...,7(2¥) in such a way
that e(m(1)) > e(n(2)) > --- > e(n(2F)).

: 3) Choose k' > k, I € {1,...,2*} and compute the Markov predictor
p(’“')(p) for each word p € S*) of the form p = 1Mo, where o is
one of m(1),...,n(I).
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: 4) Defi dictor 7, = p*F) h =

: 4) Define a predictor z,, = Paq (m1m9), where m1 = Zp - Ty g1
and 9 = Tp_g - Tp—1, as follows:

p(k)(ﬂ'z) , if 1 € {7(I+1),...,7(2%)},
p ) (mimy) , if my € {m(1),...,w(I)} .

Equation (21) defines our adaptive predictor. The overhead for this is
of the order of 2% + 2F"=FT bits.

Such an adaptive predictor has been constructed based on the first
37632 bits of sample A. Firstly, a Markov predictor of order k£ = 4
is constructed. The values of U and D® for each word (numbered
1,...,16) are displayed in Figure 3.

We see that I = 4 words (numbers 6,7,10 and 11) account for 86%
of the errors (7034 out of 8137). A Markov predictor of order k' = 8 on
those words can correct 1911 of those errors (a 23% reduction). Hence
the adaptive Markov predictor pglés) makes 6226 mistakes. The overhead
would be around 100 bits.

Starting from a predictor of order k = 7 (see Figure 4), and taking
I = 10 (accounting for 4699/6217 ~ 76% of all errors), a predictor of
order k' = 14 makes 3924 errors on those words (an overall reduction

of 12%). The adaptive Markov predictor pg(’iM) thus makes 5442 errors,
with an overhead of about 1400 bits.

(21) P;kék’)(ﬂlﬁz) = {

4.2. Compressed Markov predictor. The main weakness of Markov
predictors is the large size of the overhead. It might be feasible to try
to ‘compress’ this overhead, by representing the Markov predictor in an
equivalent, but more economic form. Our idea is to start with a boolean
function which describes the Markov predictor and then to minimize its
size using Quine’s algorithm ([8]) for minimization of boolean functions.

Consider the Markov predictor given by (18). Let Hgk) be the set
of words (patterns) of size k, such that Markov predictor predicts 1 on
those patterns:

% = {r = (r,... ,m) € {0,1}F : p®)(7r) = 1}.

Then the following boolean function gives an equivalent representa-
tion of our Markov predictor

flan,. o) =\ N\ (@i=m)
relly 1<i<k

Now we can try to minimize the size of f using the Quine minimization
algorithm, which minimizes the number of boolean operators in a logical
expression.
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ExAMPLE 4.1. Suppose the source sequence is 011001 and k& = 2.
The Markov predictor is given by

f(zo,71) = ((o = 0) A (z1 = 1)) V ((zo = 0) A (z1 = 0))

This Markov predictor does not make any mistakes for our data. After
minimization, we conclude that f(xg,z1) = (xg = 0).

Some tests performed on the real date are summarized in the follow-
ing table. Frame size was set to 37632.

Order k£ No. errors (all are type 1) Overhead (bits occupied by f)

2 8038 2
7 7917 98
10 7464 1160

Unfortunately, this method does not seem to lead to any substantial
improvement of compression ratios.

5. Improving the linear predictor

A coding approach based upon the linear predictor was shown to
be very successful, as compared to approaches based on other prediction
schemes such as the Markov predictor. Therefore, it makes sense to take
the Philips-approach based on the linear predictor as a starting point
and to try variations on this scheme. This will be the subject of this
section. We consider the following variations. In subsection 5.2, we try
linear predictors with coefficients chosen from a finite set, either {0, 1}
or {—1,0,1}. In subsection 5.4, we change the optimization criterion to
a weighted optimization criterion. In subsection 5.5, we investigate the
effect of changing the prediction order k of the linear predictor. Finally,
in subsection 5.6, we consider the effect of a lagged estimation scheme in
which B is estimated from the previous bit string rather than from the
current bit string. Firstly, let us discuss briefly how the binary data is
obtained from an analog signal. An understanding of this transformation
might lead to improvements of prediction schemes, see subsection 5.3
below.

5.1. Sigma-Delta Modulation. An audio signal — a relatively
smooth function of time — is digitized using a sigma-delta modulator
(SDM) (see Figures 5 and 6). So the additional information, which, in
principle, can help improving the quality of the prediction is the follow-
ing:

(1) The original signal X (¢) is an audio signal, and is a smooth function
of time.
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(2) The SDM is, theoretically, a deterministic function of X (¢), and it
produces the same binary sequences as an output, given the same
audio signal as an input. But in practice, some noise is always
present in the working circuit of an SDM. This noise can occasion-
ally invert an output bit of the SDM.

Summator Integrator

X(t) e 5 L Y,
Tz s

) Quantizer
Filter part

FIGURE 5. A primitive 1-st order SDM with one integrator.
The input S(t) to the quantizer is the integral of the difference
between the original signal X (t) and Y,,, the output of the
quantizer.

L X(1)

—

TS time

S(t)

FIGURE 6. A primitive 1-st order SDM. The integrated differ-
ence S(t) as a function of the original signal X ().

It follows from (1), that if some frequency f is essential in the
spectrum of X(¢), then X(¢) and X(¢ + 1/f) are highly correlated.
Since 1/f contains 1/(6f) quanta of time, there are dependencies in
the ouput binary stream (z,) at distance ¥ = 1/(6f). For exam-
ple, the frequency f = 1000 Hz corresponds to dependencies at dis-
tance k = 44.1 x 64 = 2822.4 quanta of time, if one quantum of time
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FIGURE 7. A practical implementation of a 7-th order SDM in [7]

§ = (44100 * 64)~! seconds. This suggests that a predictor of length
2000-3000 should be used. In practice however, predictors of much
smaller order k are used. Again, long predictors are not efficient due
to a large overhead. It is nevertheless possible to use longer predictors,
provided we use coefficients that can be stored using only a few bits: for
example, binary (8; € {—1,1}) or ternary (8; € {—1,0,1}).

5.2. Linear predictors of low pression. We have seen that find-
ing the optimal linear predictor is equivalent to finding a vector 8 =
(Bi,--.,Bk) € RE such that the scalar product .Y, is strictly bigger than
0 as often as possible, where Y, = (zpZp_1,... ,ZnTn_k) € {—1,1}*. In
other words, we need to find a hyperplane containing 0 in R* such that
as many Y,’s as possible lie on the same side.

This problem can theoretically be solved. Moreover, the fact that
all the Y;, lie on the cube {—1,1}* should help. It looks as if the only
B’s one needs to try are the ones which have entries in {—1,0,1}, where
one should exclude the B’s such that the number of nonzero entries is
even, to avoid that 8 -Y, = 0 for some Y,,.

A ‘linear’ predictor for us is a special function

{-1,1}F — {-1,1}

which takes the value 1 on one side of a hyperplane and the value —1
on the other. In particular it maps half of the elements to 1 and half of
them to —1.

For k = 3, up to symmetry we get the following possibilities:
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Here we denote points which are mapped to 1 by o and points which
are mapped to —1 by e. There are 6 ‘linear’ predictors of the first type
(as the cube has 6 faces) and 8 ‘linear’ predictors of the second type
(corresponding to the 8 vertices of the cube).

Functions {—1,1}* — {—1,1} are the same as functions {0, 1}¥ —
{0,1}. Regarding {0, 1} as the field F with two elements we can consider
special functions of the form

IFk_)IF) (ylaayk‘)'_)Z/Bzyz_l_ca

where 8 = (B1,...,8) € P and ¢ € F. We assume that 3 is not the
zero vector, such that half of the elements is mapped to 0 and half of the
elements is mapped to 1. As multiplication and addition in F are just
AND and XOR (where 1 corresponds to TRUE and 0 corresponds to
FALSE) these functions are easy to handle on a computer. The class of
functions one gets is different from the class of ‘linear’ predictors. Again
we draw the case of k = 3:

Now we denote points which are mapped to 0 by o and points which
are mapped to 1 by . We get 6 functions of the first and second kind
and 2 of the third kind. Here the first kind corresponds to a 8 containing
two zero entries, the second kind to a S containing one zero entry, and
the third one to b= (1,1,1).

The predictors on F = Zy. Let for the moment z, € {0,1} and
consider predictors

k
In =P+ Zﬂzxn—z ( mod 2) , Bi €F

i=1
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We compared, for every k < 12, all 2¥*1 predictors and selected the
optimal one. The minimal percentage of errors in the frames varies
from 9% to 22%, and is equal to ~ 17.5% on average, independent of
the sample.

The ternary predictors. Here we return to z, € {—1,1} and to
predictors of the form

k

Tp = sign (ﬂo + ﬁimnfi)a

=1

where 8; € {—1,0,1}. We have used the fast gradient method to mini-
mize the number of errors. The percentage of errors p equals, on average,
18.5% independent of the sample. The optimal k¥ was of order 10.
We remark here, that it is strange that ternary predictors give worse
results than binary. Probably it is due to a poor optimisation that we
do get worse results here.

As a conclusion we would suppose that the idea to use the low res-
olution predictors is not promising and could not provide the desirable
p ~ 5%.

5.3. SDM predictors. An SDM is an almost deterministic map-
ping of a signal X (¢) into the binary sequence {z;}. This means that,
given a signal X (¢), one could write an adjustable model of an SDM
to produce the output sequence {z;} almost without errors. We could
write it in a form

(22) Tn :M(X(t),tgén;xi,i <n),

where M is some fixed map, depending on the realization of the SDM,
and Z,, predicts z,, almost without errors.

In our setup, the signal X (¢),t < dn, is unknown. However, we can
reconstruct and extrapolate it from z;, 7 < n applying the low pass filter
with some coefficients. One can obtain those coefficients by analyzing
the DAC of the decoder. Therefore, we have

X(t) = f(t; x40 < n), t < dn.

Substituting the above estimate for X (¢) in (22), we should obtain an
accurate estimate for z,,.

We have not completed this approach because it demands the exact
knowledge of the SDM diagram and DAC filter characteristics. Nev-
ertheless, to see how promising this approach can be, we have tried a
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simplified version of the algorithm. The following predictor

X(t) = (fIf'n—l +e+ xn—300)/3005
S() = S(t—38)+ zp_1 * const,
z

n sign(X(t) - S(t)).

gives about ~ 18% of errors, which is quite promising.

5.4. Weighting. A promising approach to improve predictors is
‘boosting’, see e.g. [9] or [4]. In boosting, a number of predictors is con-
structed that are combined to yield the final predictor. The individual
predictors that make up the final one are constructed by training a given
base predictor from the same training data, using different weights. The
weights are such that cases that were predicted wrong frequently with
the predictors already constructed, are given more weight during the
construction of the next one.

We have not fully explored the possibilities inherent in boosting.
However, we did an experiment with the reweighting of badly predicted
cases that is at the heart of boosting. Thus, we arrived at the following
scheme to estimate the coefficient vector of the linear predictor.

N k
. 2
fo = argming Z (fUn—Zﬂj-Tn—j)
i=1

n=k+1
S { 1 if Zleﬁjxn_j‘ <1/2
0 otherwise,forn=k+1,... ,N
A N k 2
p1 = argming Z wn(xn—Zﬂjavn,j) .
n=k+1 j=1

Thus the algorithm starts by constructing the basic linear predictor
using ordinary least squares. It then throws away all ‘sure’ predictions
by giving weight 0 to all cases for which the absolute predicted value
exceeds 1/2. It then constructs a coefficient vector from the remaining
cases in the sample. The coefficient vector Bl thus found will be used
for the linear prediction.

This simple scheme performs remarkably well; some numerical re-
sults are displayed in Figure 8. It can be observed that weighting im-
proves the basic scheme by something between 0.5% and 2%. It is re-
markable that the improvement was uniform: on all frames tried in all
sequences did weighting improve.

Of course, many variants of this basic scheme are possible. Obvious
possibilities are

e Changing the threshold from 1/2 to other values
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e Tterating the scheme

However, the basic scheme given above proved to be very difficult to
improve upon, and it will be used in the remainder.

5.5. Changing the prediction order. In this subsection, we in-
vestigate the effect of the prediction order on the prediction accuracy.
Now, increasing the prediction order will ‘obviously’ improve the predic-
tion accuracy. However, this will not necessarily lead to a more efficient
coding scheme: the predictor must also be transmitted and longer pre-
dictors require more bits.

We have not investigated the efficient coding of the linear predictor
separately. However, to compensate for this effect, we have simultane-
ously changed the length of the bit sequence on which the linear predictor
is based. We expect that, roughly, the coding of a linear predictor is
proportional to the length of the predictor. Hence it will be as efficient
to use a linear predictor of length &k for a bit sequence of length N as it
is to use a linear predictor of length ck on a bit sequence of length ¢cN
for real valued c.

Qualitatively, it was found that decreasing the order of the predictor
did always deteriorate the prediction performance. Increasing the order
of the predictor to 256 did yield improvement; but there was no further
gain in increasing the order to 512. The gain was only marginal with the
basic linear predictor, but more substantial with the linear predictor ob-
tained by reweighting as described in the previous section. It was found
that the increased complexity of the predictor could be compensated for
by increasing the frame size.

Figure 8 gives qualitative results and displays the prediction error
of the linear predictor with prediction order k& = 256 estimated from
frames of size N = 100000. These can be compared with the errors
with the other approaches described above. It is easily observed that
the proposal from this section outperfroms the other approaches. Again,
the improvement was uniform in that the current approach was better
on all frames tried in all sequences.

5.6. Reducing the overhead. A final possibility to improve on
the basic linear predictor scheme is to reduce the overhead by computing
the predictor from the bits that have already been transmitted, at the
decoder, rather than transmitting the predictor from encoder to decoder.
Of course, the former scheme has several disadvantages as compared to
the latter:

e It requires computational power at the decoder that is not needed
with the current set-up.
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o It makes the music less accessible: we cannot decode a given bit
sequence without decoding its full past.

There are two basic strategies to implement such a scheme: adapting
a current solution or recomputing a solution. In the former strategy,
the coefficient vector of the linear predictor is updated continuously,
i.e. after every new bit. The second possibility is to recompute the
coefficient vector from a previous block of bits: the coefficient vector to
predict the bits in the current frame is computed from the bits in the
previous frame.

We have experimented only with the latter scheme, which we will
call the lagged scheme. We give qualitative results only. Generally, the
predictions from the lagged scheme are as good as the predictions from
the original scheme. This holds true both for the original unweighted
optimization and the proposed weighted optimization. This is the case
for sequences A, B, and C. For sequence D the results are mixed. For
the major part of the sequence the results are comparable. However, in
the middle of sequence D the lagged predictor works very badly.

For this reason, the lagged predictor cannot be used without pre-
cautions. However, some approximations to the lagged scheme can be
practical. We suggest the following options:

e The keep bit, which informs the coder to keep the coefficient vector
from the previous frame. As the lagged predictor is almost as good
as the predictor based on the current frame, this amounts to a
saving of about 50% in the transmission of the coefficient vector.

e the link bit, which tells the decoder where it can find the required
coefficient vector

e the recompute info, e.g. the lag, which tells the decoder which
parameters to utilize in the recomputation

However, the savings that can be expected from this lagged scheme are
limited as it can save at most the transmission of the coefficient vector.
Because of these limited savings and the inherent problems, we have not
pursued this lagged scheme much further.

Another possibility of saving on the transmission (storage) of the co-
efficients, is to use some methods of the theory of machine learning. For
example, one of its oldest algorithms, the so-called Perceptron Algorithm.
Let 8 = (B1,--- ,Pk) be areal vector, and X, 1= (Tn_ks-.- s Tn—1)
are the last k observed bits. We predict Z,, = 1 if (8, X},_x,n—1) is posi-
tive, and —1, otherwise. However, we are going to update (3 after each
mistake:

a) if we predict &, = —1, while z,, =1, let ' = 8+ Xp_g n—1;
b) if we predict &, = 1, while z,, = =1, let ' = — X, p—1.
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To start the algorithm we may choose § = (1,1,...,1). Motivation for
the updating rules as above is the following:

(/BI, ank,nfl) = (,8, anlc,nfl) + (ank,nfla anlc,nfl)a
so the value of (8, X,k n—1) is closer to z,, then (8, Xp_gn_1)-

We have applied the Perceptron Algorithm to our data. The quality
of the prediction is substantially worse. On average, the perceptron al-
gorithm makes twice the number of errors of the least squares predictor.
This poor quality of the predictor is not compensated by the space we
saved by not transmitting the coefficients. Therefore, the overall com-
pression of the scheme based on Perceptron algorithm is lower. It is
interesting to mention that after training the perceptron algorithm on a
long sequence, the corresponding vector of coefficients 3 is very close to
the one obtained from the Philips prediction scheme (20).

5.7. Conclusion. The linear prediction scheme suggested in [5, 6]
leads to an efficient compression algorithm. It seems that in many cases
the Philips linear predictor is quite close to the optimal linear predictor.
Nevertheless, further improvements are still possible. Let us summarize
our results on possible ways of improving the quality of linear predictors.

Switching to the longer predictors of low precision would probably
not improve the overall performance of a linear predictor.

Weighting improves. Note that this improvement can be achieved
with the current decoders as it requires change only for the encoder.

Some further benefits can be obtained by fine-tuning the frame size
and the prediction order: it is particularly advised to increase the pre-
diction order to 256. This can be achieved without loss in efficiency if the
frame size is increased from 40000 to, say, 100000. Further optimizations
are possible here.

Note that the improvements for frame A are then substantial: they
amount to a reduction of approximately 75% of the storage of the bit
string; the reduction obtained with the original approach is roughly 66%.
The improvements on the other frames are less impressive. Whether
these changes are worth the trouble will obviously depend on which of
the frames is more typical.

Moreover, the cost of transmission of the coefficient vector can be
reduced by at least 50% if a keep bit is defined.

Adaptive schemes, like the perceptron algorithm, seem to be unfea-
sible. In our opinion, it simply takes a very long time (and hence, a
lot of mistakes will be made) for such a scheme to achieve a quality
comparable to that of the least squares predictor.

Finally, the optimal linear predictors cannot be computed (or esti-
mated) efficiently at the present time.
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FIGURE 8. Prediction errors for several frames in given se-
quences for several approaches based on linear prediction.
Standard: coefficient vector of length 128 estimated from sam-
ple of size 40000 using unweighted least squares. Weighted:
coefficient vector of length 128 estimated from sample of size
40000 using weighted least squares. Weighted 100: coefficient
vector of length 256 estimated from sample of size 100000 using
weighted least squares.

Bibliography

[1] E. Amaldi, M.E. Pfetsch, L.E. Trotter, Some structural and algorithmic properties of
the maximum feasible subsystem problem. Integer programming and combinatorial op-
timization (Graz, 1999), 45-59, Lecture Notes in Comput. Sci., 1610, Springer, Berlin,
1999.

[2] E. Amaldi, V. Kann, On the approximability of minimizing nonzero variables or unsat-
isfied relations in linear systems. Theoret. Comput. Sci. 209 (1998), no. 1-2, 237-260.



40

(3]

2. ON LOSSLESS COMPRESSION OF 1-BIT AUDIO SIGNALS

H. Arora, A. McLean, Stability Analysis of 1st and 2nd Order Sigma Delta Analog to
Digital Converter, preprint www.duke.edu/ ha/HimanshuArthur.pdf

L. Breiman, Arcing classifiers. The Annals of Statistics 26, 3, pp. 801-849, 1998.

F. Bruekers, W. Oomen, R. van der Vleuten, and L. van de Kerkhof, Lossless coding of
1-bit audio signals. AES 8th Regional Convention, Tokyo, Japan, 1997.

F. Bruekers, W. Oomen , R. van der Vleuten, and L. van de Kerkhof, Improved lossless
coding of 1-bit audio signals. AES 108rd Convention, New York, 1997.

D. Reefman, P. Nuijten, Why Direct Stream Digital is the best choice as a digital audio
format, Audio ES, Convention Paper, preprint, 2001.

W. Quine, The problem of simplifying truth functions, American Mathematical Monthly,
1952, 59, pp.521-531.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee, Boosting the margin: a new explanation
for the effectiveness of voting. The Annals of Statistics 26, 5, pp. 1651-1686, 1998.



