CHAPTER 5

Magma Design Automation:
Component placement on chips; the “holey
cheese” problem

Rachel Brouwer, Thijs Brouwer, Cor Hurkens, Martijn van Manen,
Carolynne Montijn, Jan Schreuder, JF Williams.

ABSTRACT. The costs of the fabrication of a chip is partly determined by
the wire length needed by the transistors to respect the wiring scheme.
The transistors have to be placed without overlap into a prescribed con-
figuration of blockades, i.e. parts of the chip that are beforehand excluded
from positioning by for example some other functional component, and
holes, i.e. the remaining free area on the chip. A method to minimize the
wire length when the free area is a simply connected domain has already
been implemented by Magma, but the placement problem becomes much
more complex when the free area is not a simply connected domain any-
more, forming a “holey cheese”.

One of the approaches of the problem in this case is to first cluster the
transistors into so-called macro’s in such a way that closely interconnected
transistors stay together, and that the macro’s can be fit into the holes.

One way to carry out the clustering is to use a graph clustering algorithm,
the so-called Markov Cluster algorithm. Another way is to combine the
placement method of Magma on a rectangular area of the same size as
the total size of the holes, and a min cut-max flow algorithm to divide
that rectangle into more or less rectangular macro’s in such a way that
as little wires as possible are cut.

It is now possible to formulate the Quadratic Assignment Problem that
remains after clustering the original problem to one with 100 up to 1000
macros. There exists a lot of literature on finding the global minimum
of the costs, but nowadays computational possibilities are still too re-
strictive to find an optimal solution within a reasonable amount of time
and computational memory. However, we believe it is possible to find a
solution that leads to a acceptable local minimum of the costs.

1. Introduction

One of the steps in the design process of chips is the positioning of
every single transistor or “cell” on the chip. This means that, given
a certain wiring scheme, i.e. the scheme describing the connections be-
tween the cells, and taking into account the - relatively few - cells with
a prescribed position, the positioning of the various cells has to be de-
termined while under the following conditions. First, the cell must be



80 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

placed within a certain rectangle, the so-called core area; next, the cells
are not allowed to overlap; and finally, the total wire length must be
minimized, as the cost of a chip is proportional to the total wire length.
For this problem, many algorithms are known, each one with its specific
pros and cons.

The problem becomes more difficult when large parts of the core area
are excluded from positioning, often due to large, functional components
that were placed beforehand (e.g. memory, or components designed by
other companies), creating so-called blockades. The remaining “free
area” within the core area is usually comparable to a “holey cheese”.
Obviously, the cells cannot be placed on the blockades, and this addi-
tional requirement makes the positioning problem significantly harder.
Figure 1 shows an example of a typical “holey cheese”. The filled areas
are allowed and form the so-called “holes”, the white ones are blockades.
Notice that the free area is strongly disconnected.

&
\_
=

FIGURE 1. A typical example of a “holey cheese” configura-
tion: the transistors may be placed in the filled zones, the
white remaining areas are blockades.

The current algorithms of Magma suffice for simply connected do-
mains. However, in “holey cheese” cases they often end up in local
minima, for the costs that are far from optimal. The purpose of our
group during the study group week was to find an algorithm enabling
Magma to find more optimal placements of the cells in the case of a
“holey cheese”.

To this end we decided to make the following approach of the prob-
lem: first regroup the strongly connected cells in more or less equally
sized “macros”, then place these macros in the holes in such a way that
the wire length is minimized. We present two possible approaches for the
regrouping of the cells. The first one, dealt with in section 2.1, departs



2. CLUSTERING THE CELLS 81

from the wiring scheme and uses a clustering algorithm. The second one,
subject of section 2.2, is a combination of a preprocessing step using the
original Magma, software, followed by a repeated application of a min
cut-max flow algorithm. Finally, in section 3, we discuss the method to
minimize the wire length, formulating a Quadratic Assignment Problem

(QAP).

2. Clustering the cells

2.1. The Markov Cluster Algorithm. We believe that the Mar-
kov Cluster Algorithm (MCL) provides a good method to group the cells
in macros. This algorithm uses the notion of random walk for the re-
trieval of cluster structure in a graph. In a random walk at each cell the
direction to be followed is given by chance. Imagine a vast collection of
random walks, all starting from the same cell. Walkers will in general
follow different paths. An observer floating high above them will see a
flow: the crowd slowly swirles and disperses, much as if a drop of ink is
spilled into a water-filled tray.

The aim of a cluster method is to dissect a graph into regions with many
interconnections inside, and with only a few interconnections between
regions. Once inside such a region, a random walker has little chance
to get out. The idea behind MCL is very simple. Simulate many ran-
dom walks (or flow) within the whole graph, and strengthen flow where
it is already strong, and weaken it where it is weak. By repeating the
process an underlying cluster structure will gradually become visible.
The process ends up with a number of regions with strong internal flow
(clusters), separated by ’dry’ boundaries with hardly any flow.

We refer to the PhD-thesis of Stijn Van Dongen[6] for a detailed review
of this algorithm.

2.2. Constructing macros with the min cut-max flow algo-

rithm. The method of constructing macros with a min cut-max flow
algorithm departs from a square S with surface Ay over which all the
cells have been positioned in such a way that they do not overlap and
that their connectivity has already been taken into account, meaning
that the highly interconnected cells are already put together. This po-
sitioning of the cells within a square is the result of a preprocessing
method implemented by Magma.
Schematically the procedure is as follows: put a grid over square S of
which the grid lines may slightly be deformed. Then use a min cut-max
flow algorithm to deform the grid lines in such a way that they cut as
little connections as possible. The cells contained in the resulting grid
cells then form the macros.



82 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

2.2.1. Restrictions on the macros. Assume the number of macros
we want to make is n, and let Ay and A,, be the total surface of the
holes and the average size of the macros, respectively. There are some
restrictions on the number and size of the macros. First, as will be
shown in section 3, the computationnal hardness of the QAP imposes
the number of macros to be no larger then 1000. Also creating a large
number of macros might result in breaking up highly connected parts,
which looks inefficient since it is probable that the QAP routine will put
them together again. But the number of macros shouldn’t be too small
either since then the QAP might have no effect. Second, we want the
average macro to fit at least twice in the smallest hole; this constraint
is not very strict when A; <« A} since we then may choose to ignore
very small holes, however, if A; = Ay, it is necessary to use all possible
space.

2.2.2. Defining the adjustable grid. Figure 2 shows how the adjustable
grid can be defined: each grid cell should contain exactly one striped rec-
tangle and the grid lines (dash-dotted lines) can be moved freely within
the white areas.

3 NN
\i\\

...

e

FIGURE 2. The definition of the adjustable grid: each grid cell
should contain exactly one striped rectangle and the grid lines
(dash-dotted lines) can be moved freely within the white areas.

Define squares B;; (the striped ones in figure 2) with edges of length
Lp, the upper left and right corner points given by the points {(i —
1)(Ls + Lo), (j — 1)(Ls + Lo)} and {(i — 1)(Ls + Lo), ( — 1)(Ls +
L¢)+ L}, respectively, and the lower left and right corner points being



2. CLUSTERING THE CELLS 83

{(i—1)(L+Le)+La, (=1)(La+Le)} and {(i=1) (Lp+Le)+La, (j—
1)(Lp + L¢) + L}, respectively, for i = 1...[y/n], for j = 1...[v/n].
Each square B;; is now separated of a neighboring square by a distance
Lc. We assign all the cells contained in B;; to macro A;;, and we still
have to assign the cells contained in the surrounding areas to one of the
neighboring macros. This we will be done with help of a min cut-max
flow algorithm.
For the lengths Lp and Lo we suggest:

Lp = (A,/2n)"/?,

Lec=(V2-1)Lp.

That is, exactly half of the surface is assigned to the macros before-
hand. With L¢ = (V2 — 1)L we obtain n - (L + L¢)? = A,. Tt is
of course possible to adjust these numbers. If we take Lo bigger and
Lp smaller, we have less surface assigned beforehand, hence it seems
reasonable to assume that we will obtain a better assignment. On the
other hand, this has also disadvantages : the size of a macro will vary
more, and hence we may encounter problems with the placing of these
macros in the holes if Ay is close to Ap. Moreover, the speed of the min
cut-max flow algorithm depends on the size of the graph. However, the
algorithm can be executed in polynomial time, so this does not have to
lead to considerable delay.

2.2.3. The assigning procedure with a min cut-maz flow method. For
all cells ¢, we make a list of possible assignments to the macros. Notice,
from figure 2 that the cells in the areas Cj, ...C4 belong to the surround-
ing areas of four squares, whereas the cells in the areas D;...D4 belong to
the surrounding area of only two squares. Notice also that connections
that reach over the borders of a square B;; and its surrounding area will
automatically be cut.

We then assign all cells ¢ with their midpoints inside B;; to macro M;;.
For each cells ¢ in the surrounding area of B;; we make a list with all
the possible macros it can be assigned to.

We now construct a graph consisting of all cells in B;; itself and in its
surrounding area. We contract all cells inside the square B;; to one point
S, and we contract all cells outside the surrounding area to one point
T, while keeping their connecting wires as they are (See Figure 3.) We
now apply a min cut-max flow algorithm to determine a minimal cut set
and assign cells to M;; according to this cut set. The min cut-max flow
theorem and algorithm have first been investigated in 1956 by Ford and
Fulkerson. All textbooks on graphs and flows contain the theorem and
often also an algorithm. For some recent versions of the theorem and
the algorithm we refer to Diestel[5], Gross[6] and Jungnickel[7]. For a



84 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

cell that is not assigned to M;;, we remove this macro from its list as
a possible assignment. Notice that it is also possible that we have cells
in the surrounding area that are not connected to either S or T. For
these (small clusters of) cells we can choose an arbitrary macro. In our
opinion, it is advisable to assign these cells in such way that it will lead
to macros that do not vary much in size.

FI1GURE 3. Sketch of the graph used in the min cut-max flow
algorithm. The last figure shows the cluster (filled) obtained
with the algorithm

The min cut-max flow algorithm assures that for the graphs as we
have constructed above, a minimum of connections will be cut. This
does not take into account the length of these connections. It does
keep clusters of highly connected cells in one macro. Note that “long”
connections, that reach over two or more squares B;; will be cut auto-
matically. These connections will probably belong to nets that reach
over big distances and that therefore must always be cut, no matter
what way we choose to construct the macros. Note that the procedure
above depends heavily on the ability of the Magma-procedure to keeping
highly connected clusters together.

3. Formulating a new macro placement problem

After the preprocessing stage, the set of all movable cells ¢ has been
partitioned into n macros. For each movable cell ¢, let M(c) denote the
macro to which it belongs. Each macro p has an area requirement A(u),
which is equal to the total area of the transistors in the macro: A(u) =
>cepuAlc). Whenever two macros contain transistors that appear in
the same net, these macros are connected. Similarly, when a macro
contains a transistor which is connected by a net with a fixed pin f, the
macro is also considered to be connected to pin f. We elaborate on the



3. FORMULATING A NEW MACRO PLACEMENT PROBLEM 85

connectivity structure between macros and fixed pins in the following
section.

Besides the macros we are given m holes in the placement area,
with total area not less than the total required transistor area. We
consider the problem of assigning the macros to the holes in such a way
that the expected resulting wire length — after refined placement of the
transistors within each hole — will be as low as possible.

In order to properly define the problem, we first have to define the
exact connectivity requirements, and make up our mind how to assign
macros to holes in such a way that the resulting wire length between the
macros is accounted for as precisely as possible.

3.1. Connectivity between macros. The connectivity between
transistors and fixed pins has originally been defined in terms of nets,
where a net is simply a subset of the collection of placeable and fixed
pins. It is evident that after placeable transistors have been clustered
into macros these connectivity requirements carry over.

Let N be an original net, that is, N = {c1,¢o,... ,¢c b U{f1,..., fi}
containing k transistors and [ fixed pins, k > 0,7 > 0. These pins have
to be connected by some wiring network. This implies that this wiring
network covers macros M(c1),... ,M(cg) and fixed pins fi,..., fi. See
Figure 4 for an example.

net with 3 cells supernet with 2 macros

."(—'&]"' I"f—""

gg Lﬁg 0 : fixed pins Qﬂ D D é fixed pins
5O o) : o)

E 00 - ® . D’ D ®

IR : ; i i
- oo_ U U U

- = : : :

E ] D%D ‘ ' D D '

HE R N A N N . — N R S AU N R \

FIGURE 4. Partitioning into macros, connected by supernets

Note that in the macro formulation some of the requirements will be
lost, in particular when [ = 0. It may be the case that M(c;) = ... =
M (cg)- In this case we have no information about the resulting wiring
length for net N, other than that it will not be big, since it will not be
stretching over two or more holes.

What matters is, how many distinct macros are covered by each su-
pernet. Removing duplicates from M (c1),... , M(cy) we say that the net
N induces a supernet N' = {M(c1), M(c2), ... ,M(ck)}U{f1,..., fi}-



86 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

It is of interest to consider the numbers of nets and the connectivity
of transistors, and to see how this carries over to macros. To play around
with the problem we were given several instances of the Magma-problem,
and for one of these we were actually given a layout of the transistors
with a relative low wiring length, not taking into account that transistors
can be placed only inside the prescribed holes.

The toy problem contains 310 fixed pins, and 2099 movable cells, and
the wiring structure consists of 2234 nets. The total number of pin-net
combinations is 8614. The net size varies from 2 to 288 pins, with an
average of 3.58 pins per net. There are 1359 nets of size two, and 318
nets of size three. Each fixed pin was contained in a single net, and each
movable cell was contained in between 2 and 7 nets, with an average of
3.96 nets per movable cell.

From the given layout in which the transistors were laid out more or
less uniformly over a square we constructed a partition into 100 macros
by subdividing this area in a 10 by 10 grid. Now the number of macro-
supernet combinations was 4505, where one should note that as many
as 1173 supernets cover only one macro, so there are 1061 supernets
that cover two or more macros, with an average of 3.15 macros per
supernet. Among these 1061 supernets, 772 cover only two macros. The
maximum number of macros covered by a supernet is 78. So, on average,
each macro is contained in 45 supernets, of which 11.7 are singleton
supernets. The number of macro pairs that have at least one supernet
of size less than 10 in common, is 651. Hence, on average, each macro
is connected to 13 other macros.

3.2. Subdividing holes into smaller areas. In order to get a
better estimate of the ultimate wire length it seems appropriate to sub-
divide the holes into areas that are more or less equally sized, and such
that the wire length within a hole can be neglected without introducing
a too large error. The idea is to subdivide the target holes into such
smaller areas, taking the midpoint of each area as the virtual placement
position. The choice for M, the number of sub-holes, should depend on
m, the number of original holes, as well as on the sizes of the holes, and
on the number of macros n. M should preferably divide n, and the area
of each sub-hole should be an integral multiple of the average macro
area. Since the wire length estimate is more precise when more target
holes are taken, we have chosen to take M = n, for the toy problem.
See Figure 5 for an example.

A problem that arises is to split the target holes into the required
number of approximately equally sized sub-holes. First one determines
the average sub-hole area by A = & S0 area(Hp). Then hole Hy

initially gets assigned |area(H})/A] sub-holes. Next the remaining M —



3. FORMULATING A NEW MACRO PLACEMENT PROBLEM 87

> plarea(Hy) /A| sub-holes are “evenly” distributed over the holes, in
the same way as rest votes after an election have to be distributed. Once
it is decided that hole Hj, is subdivided into M}, sub-holes, the question
is where to put these sub-holes so as get an even distribution. This
depends on the aspect ratio (ratio of longer side over shorter side) as
well as the number. For instance, it is not so obvious to subdivide an
area of 20 by 40 into 5 more or less equal areas. The average area within
the hole is 800/5 = 160. One can take five rectangles of 8 by 20, or one
of 8 by 20, and four of 16 by 10, or two of 8 by 20 and three of 12 by 2.

Once it is decided how the sub-holes are defined we take the mid-
points of these sub-holes as our target positions. Let (X,,Y},), denote
the midpoint of sub-hole p, for p=1,... , M.

fixed pins

FIGURE 5. Subdivision of holes into subholes

3.3. Assignment cost. Next we will try to assign macros to posi-
tions in such a way that each macro is assigned one position, and each
position is assigned only one macro. When the clusters are more or less
equally sized, and when there is enough slack area in the system such
an assignment yields a more or less feasible layout. The cost of such an
assignment should reflect the final wire length incurred. Now the actual
wiring is done later so we can only estimate it. MAGMA is faced with
the same problem and has chosen to estimate the wire length for a net
as (half of) the perimeter of the bounding box of the pins inside a net.
Adopting the same approach we could take as the wire length for each
supernet half the perimeter of the bounding box of the fixed pins of the
supernet and the midpoints of the sub-holes covered by the supernet.

Again, this is cumbersome in the sense that such a cost function
can only be evaluated once the total assignment has been made. We
prefer to formulate a cost function that is of a more local nature. Now
recall that in the toy problem many of the supernets only cover two
or three macros. For a net of two pins at positions P; and P,, the



88 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

wl ]
- I-~

>

1
1
- Yy ! macro j to position ¢
- X r'r-{ﬁ-n- !
gl -1--A4-+-1 1
1
1

FIGURE 6. Assignment of macros to subholes

Manhattan distance d(P;, P,) equals the (shortest possible) wire length
and equals half the perimeter of the bounding box. For a net of three
pins placed at positions P, P», and Pj, the perimeter of the bounding
box is exactly equal to d(Py, P») + d(P», P3) + d(P3, P1). Hence, in the
estimate of the wire length each distance d(P;, Pj) contributes with a
factor 0.5. For (super)nets of more than three pins it is impossible
to tell a priori how much the distance d(P;, P;) will contribute to the
perimeter of the bounding box. One may estimate the contribution of
the distance between positions F; and P; when covered by a net of size
S > 3 by something like 2d(P;, P;) or by ﬁd(a,Pj). The latter
one yields a true lower bound. Another choice could be to neglect wire
length with regard to large supernets.

3.4. Formulation. Let Dy, := | X, — X4| + |Y, — Y;| denote the
Manhattan distance between positions p and ¢g. Let macros ¢ and j have
connectivity Cjj, defined by Cj; := ", 7, where the sum is taken over
all supernets v that cover both macro ¢ and 7, and where v, = 1,0.5 or
ﬁ, if supernet v has size 2,3 or S > 3, respectively. Note that the
size of a supernet is the number of distinct macros and fixed pins that it
covers. Then the contribution of the connectivity between macros ¢ and
7, when placed at positions p and ¢ respectively, to the estimated wire
length will be C;j;Dyq. Let Ejp := 37 ¢ 7, (5)d(Fp, f) denote the fixed cost
associated with assigning macro ¢ to position p. Here the sum is taken
over all fixed pins f connected to macro i by a net v(f).



4. ATTEMPTING TO SOLVE THE QAP 89

We now set the problem in variables x;, with z;, equal to 1, if macro ¢
is placed at position p, and 0, otherwise. The final mathematical problem
to ‘solve’ is the following quadratic assignment problem

Minimize Zip qu,j>i C’iijqx’ipqu + Zip Eip.’Bip
(QAP) subject to
(63) dpTip = 1 Vi
2itip = 1 vp
zip € {0,1} Vi,p

4. Attempting to solve the QAP

As the title of this section suggests, it is possible to formulate the
global placement problem in an appropriate model, but it is not that easy
to actually solve this problem to optimality. From literature [1], [2], [3],
[4] we have found that even problems of moderate size (with n = M =
30) are very notorious. Quite recently a paper [2] has been published
announcing the optimal solution of nugent30, by years of CPU, using a
distributed computing network. This is a quadratic assignment problem
with a background similar to that of the MAGMA problem.

One should keep in mind that it is not necessary to solve our problem
to optimality, since it is already an approximation of an approximation.
We have investigated methods to find a proper lower bound on the QAP-
value. The problem is that such a lower bound is found by relaxing the
original problem to something that is solvable. The actual solution of
the relaxed problem may be far away from a decent solution of the orig-
inal problem, as we will see. However, even the wvalue of the relaxed
problem can be of use, since, if it is a proper lower bound, it may indi-
cate the quality of any solution obtained by whatever way. For instance,
it is possible to find assignments of macros to positions, by means of
local search: simply start with any solution, apply small changes by ex-
changing the positions of two or more macros, and proceed until no such
change leads to improvement. We have not implemented this approach
but find it a true possibility.

Next we will describe some of the insights we found in the litera-
ture, and show how some of the easiest lower bounds can be effectively
computed. We will give the reference and provide MAGMA with copies
thereof.

4.1. Lower bounds. Each method to solve the QAP to optimality
needs, at some point in time, a way of proving that the achieved result
is best possible. In order to compute a lower bound for the general
quadratic assignment problem of the form



90 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

Minimize 37, >, 2 QijpgTipTiq
(GenQAP) subject to

(64) Y,y = 1 Vi
DiTip = 1 Vp
Tip € {071} Vi, p

one can rewrite the objective to Zip Tip qu’#i QijpgTjq and replace the
last part by the solution of

Minimize qu’héi Qiqu~77jq
(LAP)Z-p subject to

Dxig = 1 Vj

65 a4

(65) Zj%’q = 1 Yq
Tip = 1

Zjq € {071} Vjaq
To finally compute the lower bound, in literature known as the

Gilmore-Lawler Bound (GLB), one has to solve one additional Linear
Assignment Problem:

Minimize 37, (LAP);pzip
(GLB) subject to
(66) Zp Tip = 1 Vi
Yitip = 1 Vp
zip € {0,1} Vi,p

All these linear assignment problems can be solved efficiently using
standard network algorithms, even for n = M = 100, which yields a
10,000 by 10,000 assignment problem.

Other lower bounds can be computed based on eigenvalue decompo-
sition and projection methods. The main problem with these methods
is that the matrix () is not positive semi-definite. This means that the
values one gets by relaxing the constraints z;, € {0,1} are very low,
even negative.

4.2. The QAP in Koopmans-Beckmann form. Note that the
cost coefficients have a special form, as the main part of the cost is the
product of connectivity and distance. This special form allows for a
fast computation of GLB. That is, in order to solve GLB one first has to
compute the value (LAP) ip» for each ip. When the Koopmans-Beckmann
form applies, solution of (LAP) ip amounts to sorting the values Cj; (for
fixed ¢, and for j # %) in non-increasing order, sorting values D, (for
fixed p, for ¢ # p) in non-decreasing order and computing the inner



5. CONCLUSIONS AND RECOMMENDATIONS 91

product of the two arrays. Let < Cjs, Dp, > denote the value of this
inner product. Then the Gilmore-Lawler lower bound for the MAGMA
problem is given by

Minimize Y, (Eip + 5 < Cix, Dps >)Tipp
(GLB — MAGMA) subject to
(67) dpTip = 1 Vi
diTip = 1 Vp
zip € {0,1} Vi,p

4.3. Constructing a true solution. The GLB value is a true
lower bound on the global location problem. The solution of GLB-
MAGMA will actually give an assignment. However, this will probably
only be good in the sense that the allocation of macros to ‘bad positions’
does select those macros that have a limited connectivity. But the as-
signment does not discriminate too much between macros with limited
connectivity. So the main contribution of the GLB-solution is its value.
Furthermore the GLB-solution could be used as the starting point for
an exchange algorithm that can be set up in a local search frame work.
This local search approach should be using the true quadratic cost func-
tion. By exchanging the assignment of a limited number of macros at
a time, say two, three or four, one can effectively compute the change
in the objective of a tentative exchange, and perform such an exchange
as long as an improvement is made. It is mentioned in literature, that
GLB gives a poor bound when the number 7 is high. In view of this
observation, it may be wise to experiment with the number n = M, with
values in the range from 4 up to 100.

5. Conclusions and recommendations

The problem of positioning transistors in a “holey cheese” configu-
ration in such a way that the costs are minimized can be approached by
first clustering the cells with respect to their interconnectivity, and then
positioning the resulting macros into the holes so that the resulting wire
length is minimized.

One method to perform the clustering is the so-called Markov Clus-
tering Algorithm. Another method is to use the algorithm developed by
Magma to position the cells on a rectangular plane in such a way that
the wire length is minimized can be used to carry out a further clustering
of the cells. The macros can be obtained by putting a grid with movable
grid lines over the rectangle that resulted from the Magma procedure.
The exact positioning of the grid lines in such a way that as little wires
as possible are cut can be found with the help of a min cut-max flow



92 5. MAGMA DESIGN AUTOMATION: COMPONENT PLACEMENT ON CHIPS

algorithm, and the resulting grid cells then form the macros.

The positioning of the macros in the holes in such a way that the
costs are minimal can now can be translated into a Quadratical Assign-
ment Problem. The problem is then not to find an optimum, i.e. a global
minimum of the cost function, but an acceptable local minimum with
respect to the computation time. We thought for example of partition-
ing the macros in the holes randomly, and then make small changes to
the partitioning to reduce the wire length until these changes have no
more effect. There are numerous approaches to reach the minimal costs
with a reasonable computation time. We believe that the method of
exchanging successively the positions of two or more macros, starting
from a random placement, until no improvement is obtained anymore,
is an option worth being looked at. A lot of literature exists both on
the hardness of QAPs in general and on the wiring problem as a special
case. In particular papers by Anstreicher and Brixius [1],[2],[3] are of
interest. They deal with finding true optima, and give references to a
host of related material. Most of these are results of the PhD-thesis
work of Nathan Brixius [3].

Bibliography

[1] K.M. Anstreicher, N.W., Brixius, (2001), A new bound for the quadratic assignment
problem based on convex quadratic programming. Mathematical Programming 89, 341—
357.

[2] K.M. Anstreicher, N.W. Brixius, J.-P. Goux, J. Linderoth (2002, published online 2001),
Solving large quadratic assignment problems on computational grids Mathematical pro-
gramming 91 563-588.

[3] N.W. Brixius, K.M. Anstreicher, The Steinberg Wiring Problem, to appear in The
Sharpest Cut, M. Grotschel Ed., STAM.

[4] R.E. Burkard, E. Cela, P.M. Pardalos, L.S. Pitsoulis (1998), The Quadratic Assignment
Problem Technical Report no. SFB-126, Technische Universitdt Graz, Mathematik-B.

[5] R. Diestek, Graph Theory, 2nd edition, Graduate texts in Mathematics 173, Springer-
Verlag, New York, 2000.

[6] S. van Dongen, Graph clustering by flow simulation, PhD. thesis, Universiteit Twente,
The Netherlands, 2000.

[7] J. Gross, J. Yellen, Graph theory and its applications, CRC Press, Boca Raton, 1999.

[8] D. Jungnickel, Graphs, Networks and Algorithms, Algorithms and Computation in
Mathematics, Volume 5, Springer, Berlin, 1999.



